已知O是ABCD的對稱中心,E是AB的中心,請寫出一個與OE有關(guān)的結(jié)論:    .(答案不唯一,參考舉例)
【答案】分析:根據(jù)中心對稱的性質(zhì):對應線段被對稱中心平分.及三角形的中位線定理可得.
解答:解:O是ABCD的對稱中心,E是AB的中心,
則AE=BE,OA=OC.
則與OE有關(guān)的結(jié)論:BC=2OE,OE∥BC.
點評:此題綜合運用了中心對稱的性質(zhì)以及三角形的中位線定理.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

22、已知:四邊形ABCD的對角線AC、BD相交于點O,給出下列5個條件:
①AB∥DC;②OA=OC;③AB=DC;④∠BAD=∠DCB;⑤AD∥BC.
(1)從以上5個條件中任意選取2個條件,能推出四邊形ABCD是平行四邊形的有(用序號表示):如①與⑤、
①與②、①與③
;(直接在橫線上再寫出兩種)
(2)對由以上5個條件中任意選取2個條件,不能推出四邊形ABCD是平行四邊形的,請選取一種情形舉出反例說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

實驗與探究:
(1)在圖1,2,3中,已知平行四邊形ABCD的三個頂點A,B,D的坐標(如圖所示),求出圖1,2,3中的第四個頂點C的坐標,已求出圖1中頂點C的坐標是(5,2),圖2,3中頂點C的坐標分別是
 
,
 
;
精英家教網(wǎng)
(2)在圖4中,平行四邊形ABCD的頂點A,B,D的坐標(如圖所示),求出頂點C的坐標(C點坐標用含a,b,c,d,e,f的代數(shù)式表示);
精英家教網(wǎng)
歸納與發(fā)現(xiàn):
(3)通過對圖1,2,3,4的觀察和頂點C的坐標的探究,你會發(fā)現(xiàn):無論平行四邊形ABCD處于直角坐標系中哪個位置,當其頂點坐標為A(a,b),B(c,d),C(m,n),D(e,f)(如圖4)時,則四個頂點的橫坐標a,c,m,e之間的等量關(guān)系為
 
;縱坐標b,d,n,f之間的等量關(guān)系為
 

(不必證明);運用與推廣:
(4)在同一直角坐標系中有拋物線y=x2-(5c-3)x-c和三個點G(-
1
2
c,
5
2
c)
S(
1
2
c,
9
2
c)
,H(2c,0)(其中c>0).問當c為何值時,該拋物線上存在點P,使得以G,S,H,P為頂點的四邊形是平行四邊形?并求出所有符合條件的P點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

根據(jù)所給的基本材料,請你進行適當?shù)奶幚,編寫一道綜合題.
編寫要求:①提出具有綜合性、連續(xù)性的三個問題;②給出正確的解答過程;③寫出編寫意圖和學生答題情況的預測.
材料①:如圖,先把一矩形紙片ABCD對折,得到折痕MN,然后把B點疊在折痕線上,得到△ABE,再過點B把矩形ABCD第三次折疊,使點D落在直線AD上,得到折痕PQ.當沿著BE第四次將該紙片折疊后,點A就會落在EC上.
精英家教網(wǎng)
材料②:已知AC是∠MAN的平分線.
(1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
(3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
則AB+AD=
 
AC(用含α的三角函數(shù)表示).
精英家教網(wǎng)
材料③:
已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點P由B出發(fā)沿線段BA向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿線段AC向點C勻速運動,速度為2cm/s;連接PQ,設(shè)運動的時間為t(s)(0<t<2).
精英家教網(wǎng)
編寫試題選取的材料是
 
(填寫材料的序號)
編寫的試題是:(1)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式.
(2)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值.
(3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時刻t,使四邊形PQP'C為菱形?若存在,求出此時菱形的邊長.
試題解答(寫出主要步驟即可):(1)過點Q作QD⊥AP于點D,證△AQD∽△ABC,利用相似性質(zhì)及面積解答;
(2)分別求得Rt△ACB的周長和面積,由周長求出t,代入函數(shù)解析式驗證;
(3)利用余弦定理得出PC、PQ,聯(lián)立方程,求得t,再代入PC解得答案.

查看答案和解析>>

科目:初中數(shù)學 來源:新教材新學案 數(shù)學 八年級下冊 人教版 題型:047

在近幾年中考中曾經(jīng)出現(xiàn)過以下考題,請你試著解決這幾個問題,并思考它們源自于教材中哪個基本圖形和問題,并分析一下題目是如何進行改編的.

(1)已知O是ABCD的對角線AC,BD的交點,EF過點O且與邊AD,BC分別交于點E,F(xiàn),則圖中全等三角形共有(  )對;

(2)已知ABCD的對角線相交于點O,OE⊥AD于E,OF⊥BC于F.求證:OE=OF;

(3)ABCD中,過對角線的交點O的直線交CB,AD的延長線于E和F.求證:BE=DF.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年重慶市萬州區(qū)初中數(shù)學教師專業(yè)知識競賽試卷(解析版) 題型:解答題

根據(jù)所給的基本材料,請你進行適當?shù)奶幚恚帉懸坏谰C合題.
編寫要求:①提出具有綜合性、連續(xù)性的三個問題;②給出正確的解答過程;③寫出編寫意圖和學生答題情況的預測.
材料①:如圖,先把一矩形紙片ABCD對折,得到折痕MN,然后把B點疊在折痕線上,得到△ABE,再過點B把矩形ABCD第三次折疊,使點D落在直線AD上,得到折痕PQ.當沿著BE第四次將該紙片折疊后,點A就會落在EC上.

材料②:已知AC是∠MAN的平分線.
(1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
(3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
則AB+AD=______AC(用含α的三角函數(shù)表示).

材料③:
已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點P由B出發(fā)沿線段BA向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿線段AC向點C勻速運動,速度為2cm/s;連接PQ,設(shè)運動的時間為t(s)(0<t<2).

編寫試題選取的材料是______(填寫材料的序號)
編寫的試題是:(1)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式.
(2)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值.
(3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時刻t,使四邊形PQP'C為菱形?若存在,求出此時菱形的邊長.
試題解答(寫出主要步驟即可):(1)過點Q作QD⊥AP于點D,證△AQD∽△ABC,利用相似性質(zhì)及面積解答;
(2)分別求得Rt△ACB的周長和面積,由周長求出t,代入函數(shù)解析式驗證;
(3)利用余弦定理得出PC、PQ,聯(lián)立方程,求得t,再代入PC解得答案.

查看答案和解析>>

同步練習冊答案