【題目】如圖1,一枚質地均勻的正四面體骰子,它有四個面并分別標有數(shù)字1,2,3,4.如圖2,正方形ABCD頂點處各有一個圈.跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子著地一面上的數(shù)字是幾,就沿正方形的邊順時針方向連續(xù)跳幾個邊長.
如:若從圈A起跳,第一次擲得3,就順時針連續(xù)跳3個邊長,落到圈D;若第二次擲得2,就從D開始順時針連續(xù)跳2個邊長,落到圈B;…
設游戲者從圈A起跳.

(1)嘉嘉隨機擲一次骰子,求落回到圈A的概率P1
(2)淇淇隨機擲兩次骰子,用列表法求最后落回到圈A的概率P2 , 并指出她與嘉嘉落回到圈A的可能性一樣嗎?

【答案】
(1)解:∵共有4種等可能的結果,落回到圈A的只有1種情況,

∴落回到圈A的概率P1=


(2)解:列表得:

1

2

3

4

1

(1,1)

(2,1)

(3,1)

(4,1)

2

(1,2)

(2,2)

(3,2)

(4,2)

3

(1,3)

(2,3)

(3,3)

(4,3)

4

(1,4)

(2,4)

(3,4)

(4,4)

∵共有16種等可能的結果,最后落回到圈A的有(1,3),(2,2)(3,1),(4,4),

∴最后落回到圈A的概率P2= =

∴她與嘉嘉落回到圈A的可能性一樣


【解析】(1)嘉嘉隨機擲一次骰子共有4種等可能的結果,落回到圈A的只有1種情況,根據(jù)概率公式求出概率;(2)根據(jù)題意列出表格,由表格知共有16種等可能的結果,最后落回到圈A的有4種,根據(jù)概率公式求出最后落回到圈A的概率得出結論。
【考點精析】根據(jù)題目的已知條件,利用列表法與樹狀圖法和概率公式的相關知識可以得到問題的答案,需要掌握當一次試驗要設計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結果,通常采用樹狀圖法求概率;一般地,如果在一次試驗中,有n種可能的結果,并且它們發(fā)生的可能性都相等,事件A包含其中的m中結果,那么事件A發(fā)生的概率為P(A)=m/n.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,點E、F分別在邊ABCD上,下列條件不能判定四邊形DEBF一定是平行四邊形的是(

A.AECFB.DEBFC.ADE=∠CBFD.AED=∠CFB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AD△ABC的角平分線,點OAB的中點,連接DO并延長到點E,使OE=OD,連接AEBE

1)求證:四邊形AEBD是矩形;

2)當△ABC滿足什么條件時,矩形AEBD是正方形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC≌△ADE,∠DAC70°,∠BAE100°BC、DE相交于點F,則∠DFB度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)閱讀理解:

如圖①,在ABC中,若AB=8,AC=4,求BC邊上的中線AD的取值范圍是   

2)問題解決:如圖②,在ABCDBC邊上的中點,DEDF于點DDEAB于點E,DFAC于點F,連接EF,求證:BE+CFEF;

3)問題拓展:如圖③,在四邊形ABCD中,∠B+D=180°CB=CD,∠BCD=140°,以C為頂點作一個70角的兩邊分別交AB,ADE,F兩點,連接EF,探索線段BEDF,EF之間的數(shù)量關系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD,則∠A、∠C、∠E、∠F滿足的數(shù)量關系是(  )

A. A=∠C+∠E+∠F B. A+∠E﹣∠C﹣∠F=180°

C. A﹣∠E+∠C+∠F=90° D. A+∠E+∠C+∠F=360°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點A(﹣3,m+8),B(n,﹣6)兩點.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:平面直角坐標系中,A(a,3)、B(b,6)、C(c,1),a、bc都為實數(shù),并且滿足3b-5c=-2a-18,4bc=3a+10

(1) 請直接用含a的代數(shù)式表示bc

(2) 當實數(shù)a變化時,判斷ABC的面積是否發(fā)生變化?若不變,求其值;若變化,求其變化范圍

(3) 當實數(shù)a變化時,若線段ABy軸相交,線段OB與線段AC交于點P,且SPABSPBC,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:直線l分別交ABCDE、F兩點,且ABCD

1 說明:∠1=∠2;

2 如圖2,點M、NAB、CD之間,且在直線l左側,若EMN+∠FNM=260°

求:AEM+∠CFN的度數(shù);

如圖3,若EP平分AEM,FP平分CFN,求P的度數(shù);

3 如圖4,∠2=80°,點G在射線EB上,點HAB上方的直線l上,點Q是平面內一點,連接QG、QH,若AGQ=18°,FHQ=24°,直接寫出GQH的度數(shù).

查看答案和解析>>

同步練習冊答案