【題目】(1)閱讀理解:
如圖①,在△ABC中,若AB=8,AC=4,求BC邊上的中線AD的取值范圍是
(2)問題解決:如圖②,在△ABC中D是BC邊上的中點(diǎn),DE⊥DF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,求證:BE+CF>EF;
(3)問題拓展:如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C為頂點(diǎn)作一個(gè)70角的兩邊分別交AB,AD于E,F兩點(diǎn),連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.
【答案】(1)2<AD<6;(2)證明見解析;(3)BE+DF=EF,證明見解析
【解析】
(1)如圖1(見解析),先根據(jù)三角形全等的判定定理與性質(zhì)得出,再根據(jù)三角形的三邊關(guān)系定理即可得;
(2)如圖2(見解析),先同(1),根據(jù)三角形全等的判定定理與性質(zhì)得出,再根據(jù)垂直平分線的判定與性質(zhì)得出,然后根據(jù)三角形的三邊關(guān)系定理、等量代換即可得證;
(3)如圖3(見解析),先根據(jù)角的和差得出,再根據(jù)三角形全等的判定定理與性質(zhì)可得,,從而可得,然后根據(jù)三角形全等的判定定理與性質(zhì)可得,最后根據(jù)線段的和差、等量代換即可得.
(1)如圖1,延長(zhǎng)AD至E,使,連接BE
∵AD是BC邊上的中線
∴
在和中,
∴
∴
在中,由三角形的三邊關(guān)系得:
∴,即
∴,即
∴
故答案為:;
(2)如圖2,延長(zhǎng)FD至點(diǎn)M,使,連接BM、EM
同(1)得:
∴
∵,
∴是的垂直平分線
∴
在中,由三角形的三邊關(guān)系得:
∴;
(3);證明如下:
如圖3,延長(zhǎng)AB至點(diǎn)N,使,連接CN
∵,
∴
在和中,
∴
∴,
∵,
∴
∴
∴
在和中,
∴
∴
∵
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,△ABO的頂點(diǎn)坐標(biāo)分別為O(0,0)、A(2a,0)、B(0,﹣a),線段EF兩端點(diǎn)坐標(biāo)為E(﹣m,a+1),F(xiàn)(﹣m,1)(2a>m>a);直線l∥y軸交x軸于P(a,0),且線段EF與CD關(guān)于y軸對(duì)稱,線段CD與NM關(guān)于直線l對(duì)稱.
(1)求點(diǎn)N、M的坐標(biāo)(用含m、a的代數(shù)式表示);
(2)△ABO與△MFE通過平移能重合嗎?能與不能都要說明其理由,若能請(qǐng)你說出一個(gè)平移方案(平移的單位數(shù)用m、a表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了抓住梵凈山文化藝術(shù)節(jié)的商機(jī),某商店決定購(gòu)進(jìn)A、B兩種藝術(shù)節(jié)紀(jì)念品.若購(gòu)進(jìn)A種紀(jì)念品8件,B種紀(jì)念品3件,需要950元;若購(gòu)進(jìn)A種紀(jì)念品5件,B種紀(jì)念品6件,需要800元.
(1)求購(gòu)進(jìn)A、B兩種紀(jì)念品每件各需多少元?
(2)若該商店決定購(gòu)進(jìn)這兩種紀(jì)念品共100件,考慮市場(chǎng)需求和資金周轉(zhuǎn),用于購(gòu)買這100件紀(jì)念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進(jìn)貨方案?
(3)若銷售每件A種紀(jì)念品可獲利潤(rùn)20元,每件B種紀(jì)念品可獲利潤(rùn)30元,在第(2)問的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是一棵大樹,BF是一個(gè)斜坡,坡角為30°,某時(shí)刻太陽光直射斜坡BF,樹頂端A的影子落到斜坡上的點(diǎn)D處,已知BC=6m,BD=4m,求樹高AC的高度(結(jié)果精確到0.1m,參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B.
(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系___;
(2)如圖2,過點(diǎn)B作BD⊥AM于點(diǎn)D,求證:∠ABD=∠C;
(3)如圖3,在(2)問的條件下,點(diǎn)E. F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,一枚質(zhì)地均勻的正四面體骰子,它有四個(gè)面并分別標(biāo)有數(shù)字1,2,3,4.如圖2,正方形ABCD頂點(diǎn)處各有一個(gè)圈.跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子著地一面上的數(shù)字是幾,就沿正方形的邊順時(shí)針方向連續(xù)跳幾個(gè)邊長(zhǎng).
如:若從圈A起跳,第一次擲得3,就順時(shí)針連續(xù)跳3個(gè)邊長(zhǎng),落到圈D;若第二次擲得2,就從D開始順時(shí)針連續(xù)跳2個(gè)邊長(zhǎng),落到圈B;…
設(shè)游戲者從圈A起跳.
(1)嘉嘉隨機(jī)擲一次骰子,求落回到圈A的概率P1;
(2)淇淇隨機(jī)擲兩次骰子,用列表法求最后落回到圈A的概率P2 , 并指出她與嘉嘉落回到圈A的可能性一樣嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,BC=8厘米,點(diǎn)D在AC上,CD=3厘米.點(diǎn)P、Q分別由A,C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P沿AC方向向點(diǎn)C勻速移動(dòng),速度為每秒k厘米,行完AC全程用時(shí)8秒;點(diǎn)Q沿CB方向向點(diǎn)B勻速移動(dòng),速度為每秒1厘米.設(shè)運(yùn)動(dòng)的時(shí)間為x秒(0<x<8),△DCQ的面積為y1平方厘米,△PCQ的面積為y2平方厘米.
(1)求y1與x的函數(shù)關(guān)系,并在圖2中畫出y1的圖象;
(2)如圖2,y2的圖象是拋物線的一部分,其頂點(diǎn)坐標(biāo)是(4,12),求點(diǎn)P的速度及AC的長(zhǎng);
(3)在圖2中,點(diǎn)G是x軸正半軸上一點(diǎn)0<OG<6,過G作EF垂直于x軸,分別交y1、y2的圖象于點(diǎn)E、F.
①說出線段EF的長(zhǎng)在圖1中所表示的實(shí)際意義;
②當(dāng)0<x<6時(shí),求線段EF長(zhǎng)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校德育處組織“四品八德”好少年評(píng)比活動(dòng),每班只有一個(gè)名額.現(xiàn)某班有甲、乙、丙三名學(xué)生參與競(jìng)選,第一輪根據(jù)“品行規(guī)范”、“學(xué)習(xí)規(guī)范”進(jìn)行量化考核.甲乙丙他們的量化考核成績(jī)(單位:分)分別用兩種方式進(jìn)行了統(tǒng)計(jì),如下表和圖1:
(1)請(qǐng)將表和圖1中的空缺部分補(bǔ)充完整;
(2)競(jìng)選的第二輪是由本班的50位學(xué)生進(jìn)行投票,每票計(jì)6分,甲、乙、丙三人的得票情況如圖2(沒有棄權(quán)票,每名學(xué)生只能選一人).
①若將“品行規(guī)范”、“學(xué)習(xí)規(guī)范”、“得票”三項(xiàng)測(cè)試得分按4:3:3的比例確定最后成績(jī),通過計(jì)算誰將會(huì)被推選為!八钠钒说隆焙蒙倌辏
②若規(guī)定得票測(cè)試分占20%,要使甲學(xué)生最后得分不低于91分,則“品行規(guī)范”成績(jī)?cè)诳偡种兴急壤娜≈捣秶鷳?yīng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AE、BF是角平分線,它們相交于點(diǎn)O,AD是高,∠BAC=50°,∠C=70°,求∠DAE,∠AOB的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com