【題目】如圖是反比例函數(shù)的圖象,點,分別在圖象的兩支上,以為對角線作矩形且軸.
(1)當線段過原點時,分別寫出與,與的一個等量關(guān)系式;
(2)當、兩點在直線上時,求矩形的周長;
(3)當時,探究與的數(shù)量關(guān)系.
【答案】(1),;(2)矩形的周長為.(3)與的數(shù)量關(guān)系是.
【解析】
(1)根據(jù)反比例函數(shù)的對稱性得到點A與點C關(guān)于原點對稱,即可得到,;
(2)解兩個函數(shù)關(guān)系式的方程組求出點A與點C的坐標,得到AB及BC的長,利用周長公式求出答案;
(3)由點A、C都在反比例函數(shù)的圖象,得到,,根據(jù)AB=BC得到,即可求出.
(1)∵點A、C在反比例函數(shù)的圖象,
∴當線段AC經(jīng)過原點時,,;
(2),解之得,.
∴,.
∴,,
∴矩形的周長=.
答:矩形的周長為.
(3)∵點、均在的圖象上,
∴,.
∵,
∴.
∴.
答:與的數(shù)量關(guān)系是.
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,拋物線與軸交于點A和點C(2,0),與 軸交于點D,將△DOC繞點O逆時針旋轉(zhuǎn)90°后,點D恰好與點A重合,點C與點B重合.
(1)直接寫出點A和點B的坐標;
(2)求和的值;
(3)已知點E是該拋物線的頂點,求證:AB⊥EB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(探索發(fā)現(xiàn))
如圖①,是一張直角三角形紙片,,小明想從中剪出一個以為內(nèi)角且面積最大的矩形,經(jīng)過多次操作發(fā)現(xiàn),當沿著中位線、剪下時,所得的矩形的面積最大,隨后,他通過證明驗證了其正確性,并得出:矩形的最大面積與原三角形面積的比值為_____________.
(拓展應用)
如圖②,在中,,邊上的高,矩形的頂點、分別在邊、上,頂點、在邊上,則矩形面積的最大值為_________.(用含的代數(shù)式表示)
(靈活應用)
如圖③,有一塊“缺角矩形”,,,,,小明從中剪出了一個面積最大的矩形(為所剪出矩形的內(nèi)角),求該矩形的面積.
(實際應用)
如圖④,現(xiàn)有一塊四邊形的木板余料,經(jīng)測量,,,且,,木匠徐師傅從這塊余料中裁出了頂點、在邊上且面積最大的矩形,求該矩形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是樓梯一部分示意圖,樓梯臺階寬度均為,高度均為,且,均與樓面垂直,點,分別是,的中點,,,.
(1)判斷與的位置關(guān)系,并說明理由;
(2)求的值;
(3)求點到水平樓面的距離(精確到).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是一臺實物投影儀,圖2是它的示意圖,折線表示固定支架,垂直水平桌面,點為旋轉(zhuǎn)點,可以旋轉(zhuǎn),當繞點逆時針旋轉(zhuǎn)時,投影探頭始終垂直于水平桌面,經(jīng)測量:,,,.(結(jié)果精確到)
(1)如圖2所示,,.
①填空: ;
②求投影探頭的端點到桌面的距離;
(2)如圖3所示,將(1)中的向下旋轉(zhuǎn),當投影探頭的端點到桌面的距離為時,求的大。(參考數(shù)據(jù)span>)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A在雙曲線y=上,點B在雙曲線y=(k≠0)上,AB∥x軸,過點A作AD⊥x軸于D.連接OB,與AD相交于點C,若AC=2CD,則k=__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P為⊙O直徑AB延長線上的一點,PC切⊙O于點C,過點B作CP的垂線BH交⊙O于點D,連結(jié)AC,CD.
(1)求證:∠PBH=2∠HDC;
(2)若sin∠P=,BH=3,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為增強學生的安全意識,我市某中學組織初三年級1000名學生參加了“校園安全知識競賽”,隨機抽取了一個班學生的成績進行整理,分為,,,四個等級,并把結(jié)果整理繪制成條形統(tǒng)計圖與扇形統(tǒng)計圖(部分),請依據(jù)如圖提供的信息,完成下列問題:
(1)請估計本校初三年級等級為的學生人數(shù);
(2)學校決定從得滿分的3名女生和2名男生中隨機抽取3人參加市級比賽,請求出恰好抽到2名女生和1名男生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的直徑AB=26,P是AB上(不與點A、B重合)的任一點,點C、D為⊙O上的兩點,若∠APD=∠BPC,則稱∠CPD為直徑AB的“回旋角”.
(1)若∠BPC=∠DPC=60°,則∠CPD是直徑AB的“回旋角”嗎?并說明理由;
(2)若的長為π,求“回旋角”∠CPD的度數(shù);
(3)若直徑AB的“回旋角”為120°,且△PCD的周長為24+13,直接寫出AP的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com