【題目】已知如圖,拋物線與軸交于點(diǎn)A和點(diǎn)C(2,0),與 軸交于點(diǎn)D,將△DOC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后,點(diǎn)D恰好與點(diǎn)A重合,點(diǎn)C與點(diǎn)B重合.
(1)直接寫出點(diǎn)A和點(diǎn)B的坐標(biāo);
(2)求和的值;
(3)已知點(diǎn)E是該拋物線的頂點(diǎn),求證:AB⊥EB.
【答案】(1)A(-6,0)、B(0,2);(2),;(3)E(-2,8) .
【解析】
試題
(1)由題意易得點(diǎn)D的坐標(biāo)為(0,6),結(jié)合AOB是由△DOC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到的,即可得到OA=6,OB=OC=2,由此即可得到點(diǎn)A和點(diǎn)B的坐標(biāo);
(2)將點(diǎn)A和點(diǎn)C的坐標(biāo)代入列出關(guān)于的二元一次方程組,解方程組即可求得的值;
(3)由(2)中所得的值可得二次函數(shù)的解析式,把解析式配方即可求得點(diǎn)E的坐標(biāo),結(jié)合點(diǎn)A和點(diǎn)B的坐標(biāo)即可求得AE2、AB2、BE2的值,這樣由勾股定理的逆定理即可得到∠ABE=90°,從而可得AB⊥BE.
試題解析:
(1)∵在中,當(dāng)時(shí),,
∴點(diǎn)D的坐標(biāo)為(0,6),
∵△AOB是由△DOC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到的,
∴OA=OD=6,OB=OC=2,
∴點(diǎn)A的坐標(biāo)為(-6,0),點(diǎn)B的坐標(biāo)為(0,2);
(2)∵點(diǎn)A(-6,0)和點(diǎn)C(2,0)在的圖象上,
∴ ,解得: ;
(3)如圖,連接AE,
由(2)可知,
∴,
∴點(diǎn)E的坐標(biāo)為(-2,8),
∵點(diǎn)A(-6,0),點(diǎn)B(0,2),
∴AE2=,AB2=,BE2=,
∴AE2=AB2+BE2,
∴∠ABE=90°,
∴AB⊥EB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在中,,點(diǎn)為邊上一動(dòng)點(diǎn),且,連接,其中.
問(wèn)題發(fā)現(xiàn):(1)如圖1,若,與有怎樣的數(shù)量關(guān)系?的值為多少?直接寫出答案;
類比探究,(2)如圖2,若,點(diǎn)在的延長(zhǎng)線上,與有怎樣的數(shù)量關(guān)系?的值為多少?請(qǐng)說(shuō)明理由.
拓展應(yīng)用:(3)如圖3,在中,,,為上一點(diǎn),以為邊,在如圖所示位置作正方形,點(diǎn)為正方形的對(duì)稱中心,且,請(qǐng)直接寫出的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=mx+n(m≠0)的圖象與反比例函數(shù)(k≠0)的圖象交于第一、三象限內(nèi)的A、B兩點(diǎn),與y軸交于點(diǎn)C,過(guò)點(diǎn)B作BM⊥x軸,垂足為M,BM=OM,OB=,點(diǎn)A的縱坐標(biāo)為4.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)連接AO,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小方與小輝在玩軍棋游戲,他們定義了一種新的規(guī)則,用軍棋中的“工兵”、“連長(zhǎng)”、“地雷”比較大小,共有6個(gè)棋子,分別為1個(gè)“工兵”,2個(gè)“連長(zhǎng)”,3個(gè)“地雷”游戲規(guī)則如下:①游戲時(shí),將棋反面朝上,兩人隨機(jī)各摸一個(gè)棋子進(jìn)行比賽,先摸者摸出的棋不放回;②“工兵”勝“地雷”,“地雷”勝“連長(zhǎng)”,“連長(zhǎng)”勝“工兵”;③相同棋子不分勝負(fù).
(1)若小方先摸,則小方摸到“排長(zhǎng)”的事件是 ;若小方先摸到了“連長(zhǎng)”,小輝在剩余的5個(gè)棋子中隨機(jī)摸一個(gè),則這一輪中小方勝小輝的概率為 .
(2)如果先拿走一個(gè)“連長(zhǎng)”,在剩余的5個(gè)棋子中小方先摸一個(gè)棋子,然后小輝在剩余的4個(gè)棋子中隨機(jī)摸一個(gè),求這一輪中小方獲勝的概率 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解九年級(jí)學(xué)生的體能狀況,從我校九年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行八百米跑體能測(cè)試,測(cè)試結(jié)果分為A,B,C,D四個(gè)等級(jí),請(qǐng)根據(jù)兩幅圖中的信息回答下列問(wèn)題:
(1)求本次測(cè)試共調(diào)查了 名學(xué)生,補(bǔ)全條形統(tǒng)計(jì)圖;
(2)B等級(jí)人數(shù)對(duì)應(yīng)扇形統(tǒng)計(jì)圖的圓心角的大小為 ;
(3)我校九年級(jí)共有2100名學(xué)生,請(qǐng)你估計(jì)九年級(jí)學(xué)生中體能測(cè)試結(jié)果為C等級(jí)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD是⊙O的弦,AB是直徑,且CD∥AB,連接AC、AD、OD,其中AC=CD,過(guò)點(diǎn)B的切線交CD的延長(zhǎng)線于E.
(1)求證:DA平分∠CDO;
(2)若AB=12,求圖中陰影部分的周長(zhǎng)之和(參考數(shù)據(jù):π=3.1,=1.4,=1.7).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的直徑AB=26,P是AB上(不與點(diǎn)A、B重合)的任一點(diǎn),點(diǎn)C、D為⊙O上的兩點(diǎn),若∠APD=∠BPC,則稱∠CPD為直徑AB的“回旋角”.
(1)若∠BPC=∠DPC=60°,則∠CPD是直徑AB的“回旋角”嗎?并說(shuō)明理由;
(2)若的長(zhǎng)為π,求“回旋角”∠CPD的度數(shù);
(3)若直徑AB的“回旋角”為120°,且△PCD的周長(zhǎng)為24+13,直接寫出AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB與x軸交于點(diǎn)A(1,0),與y軸交于點(diǎn)B(0,-2).
(1)求直線AB的解析式;
(2)直線AB上是否存在點(diǎn)C,使△BOC的面積為2?若存在,求出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是反比例函數(shù)的圖象,點(diǎn),分別在圖象的兩支上,以為對(duì)角線作矩形且軸.
(1)當(dāng)線段過(guò)原點(diǎn)時(shí),分別寫出與,與的一個(gè)等量關(guān)系式;
(2)當(dāng)、兩點(diǎn)在直線上時(shí),求矩形的周長(zhǎng);
(3)當(dāng)時(shí),探究與的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com