【題目】某同學(xué)要證明命題“平行四邊形的對(duì)邊相等.”是正確的,他畫出了圖形,并寫出了如下已知和不完整的求證.

已知:如圖,四邊形ABCD是平行四邊形.

求證:AB=CD,

(1)補(bǔ)全求證部分;

(2)請(qǐng)你寫出證明過程.

證明:

【答案】(1)BC=DA;(2)證明見解析.

【解析】

試題分析:(1)根據(jù)題意容易得出結(jié)論;

(2)連接AC,與平行四邊形的性質(zhì)得出AB∥CD,AD∥BC,證出∠BAC=∠DCA,∠BCA=∠DAC,由ASA證明△ABC≌△CDA,得出對(duì)應(yīng)邊相等即可.

試題解析:(1)已知:如圖,四邊形ABCD是平行四邊形.

求證:AB=CD,BC=DA;

故答案為:BC=DA;

(2)證明:連接AC,如圖所示:

∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC,∴∠BAC=∠DCA,∠BCA=∠DAC,在△ABC和△CDA中,∵∠BAC=DCA,AC=CA,BCA=DAC,∴△ABC≌△CDA(ASA),∴AB=CD,BC=DA.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊△ABC外側(cè)作直線AP,點(diǎn)B關(guān)于直線AP的對(duì)稱點(diǎn)為D,連接BD,CD,其中CD交直線AP于點(diǎn)E.
(1)依題意補(bǔ)全圖1;

(2)若∠PAB=30°,求∠ACE的度數(shù);
(3)如圖2,若60°<∠PAB<120°,判斷由線段AB,CE,ED可以構(gòu)成一個(gè)含有多少度角的三角形,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC為銳角三角形,AD是BC邊上的高,正方形EFGH的一邊FG在BC上,頂點(diǎn)E、H分別在AB、AC上,已知BC=40cm,AD=30cm.

(1)求證:AEH∽△ABC;

(2)求這個(gè)正方形的邊長與面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A(0,2),B(4,0).
(1)如圖1,連接AB,若D(0,﹣6),DE⊥AB于點(diǎn)E,B、C關(guān)于y軸對(duì)稱,M是線段DE上的一點(diǎn),且DM=AB,連接AM,試判斷線段AC與AM之間的位置和數(shù)量關(guān)系,并證明你的結(jié)論;

(2)如圖2,在(1)的條件下,若N是線段DM上的一個(gè)動(dòng)點(diǎn),P是MA延長線上的一點(diǎn),且DN=AP,連接PN交y軸于點(diǎn)Q,過點(diǎn)N作NH⊥y軸于點(diǎn)H,當(dāng)N點(diǎn)在線段DM上運(yùn)動(dòng)時(shí),△MQH的面積是否為定值?若是,請(qǐng)求出這個(gè)值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列尺規(guī)作圖,能判斷AD是△ABC邊上的高是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】太陽的半徑約是69000千米,用科學(xué)記數(shù)法表示約是千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的是(  )

A. 兩條對(duì)角線互相平分的四邊形是平行四邊形

B. 兩條對(duì)角線相等的四邊形是矩形

C. 兩條對(duì)角線互相垂直的四邊形是菱形

D. 兩條對(duì)角線互相垂直且平分的四邊形是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖∠MON=30°,P為∠MON平分線上一點(diǎn),PD⊥ON于D,PE∥ON,交OM于E,若OE=12cm,則PD長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,∠A=55°,將其折疊,使點(diǎn)A落在邊CB上A′處,折痕為CD,則∠A′DB=(
A.40°
B.30°
C.20°
D.10°

查看答案和解析>>

同步練習(xí)冊(cè)答案