【題目】如圖,y關(guān)于x的二次函數(shù)y=﹣(x+m)(x﹣3m)圖象的頂點(diǎn)為M,圖象交x軸于A(yíng)、B兩點(diǎn),交y軸正半軸于D點(diǎn).以AB為直徑作圓,圓心為C.定點(diǎn)E的坐標(biāo)為(﹣3,0),連接ED.(m>0)
(1)寫(xiě)出A、B、D三點(diǎn)的坐標(biāo);
(2)當(dāng)m為何值時(shí)M點(diǎn)在直線(xiàn)ED上?判定此時(shí)直線(xiàn)與圓的位置關(guān)系;
(3)當(dāng)m變化時(shí),用m表示△AED的面積S,并在給出的直角坐標(biāo)系中畫(huà)出S關(guān)于m的函數(shù)圖象的示意圖.
【答案】(1)A(﹣m,0),B(3m,0),D(0,m).(2)直線(xiàn)ED與⊙C相切.(3)見(jiàn)解析
【解析】
試題分析:(1)根據(jù)x軸,y軸上點(diǎn)的坐標(biāo)特征代入即可求出A、B、D三點(diǎn)的坐標(biāo);
(2)待定系數(shù)法先求出直線(xiàn)ED的解析式,再根據(jù)切線(xiàn)的判定得出直線(xiàn)與圓的位置關(guān)系;
(3)分當(dāng)0<m<3時(shí),當(dāng)m>3時(shí)兩種情況討論求得關(guān)于m的函數(shù).
解:(1)令y=0,則﹣(x+m)(x﹣3m)=0,解得x1=﹣m,x2=3m;
令x=0,則y=﹣(0+m)(0﹣3m)=m.
故A(﹣m,0),B(3m,0),D(0,m).
(2)設(shè)直線(xiàn)ED的解析式為y=kx+b,將E(﹣3,0),D(0,m)代入得:
解得,k=,b=m.
∴直線(xiàn)ED的解析式為y=mx+m.
將y=﹣(x+m)(x﹣3m)化為頂點(diǎn)式:y=﹣(x﹣m)2+m.
∴頂點(diǎn)M的坐標(biāo)為(m,m).代入y=mx+m得:m2=m
∵m>0,
∴m=1.所以,當(dāng)m=1時(shí),M點(diǎn)在直線(xiàn)DE上.
連接CD,C為AB中點(diǎn),C點(diǎn)坐標(biāo)為C(m,0).
∵OD=,OC=1,
∴CD=2,D點(diǎn)在圓上
又∵OE=3,DE2=OD2+OE2=12,
EC2=16,CD2=4,
∴CD2+DE2=EC2.
∴∠EDC=90°
∴直線(xiàn)ED與⊙C相切.
(3)當(dāng)0<m<3時(shí),S△AED=AE.OD=m(3﹣m)
S=﹣m2+m.
當(dāng)m>3時(shí),S△AED=AEOD=m(m﹣3).
即S=m2_ m.
S關(guān)于m的函數(shù)圖象的示意圖如右:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在方格紙中,三角形ABC的三個(gè)頂點(diǎn)和點(diǎn)P都在小方格的頂點(diǎn)上.
(1)請(qǐng)?jiān)趫D1中,畫(huà)出將三角形ABC繞點(diǎn)C旋轉(zhuǎn)后的三角形A1B1C,使得點(diǎn)P落在三角形A1B1C內(nèi)部,且三角形A1B1C的頂點(diǎn)也都落在方格的頂點(diǎn)上.
(2)寫(xiě)出旋轉(zhuǎn)角的度數(shù) .
(3)拓展延伸:如圖2,將直角三角形ABC(其中∠C=90°)繞點(diǎn)A按順時(shí)針?lè)较蜻x擇115°得到△AB1C1,使得點(diǎn)C,A,B1在同一條直線(xiàn)上,那么∠BAC1等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E,F(xiàn)分別是平行四邊形ABCD的邊AB,DC上的點(diǎn),AF與DE相交于點(diǎn)P,F(xiàn)B與EC相交于點(diǎn)B,若S△APD=15cm2,S△BQC=25cm2,則陰影部分的面積為( )
A.10cm2 B.20cm2 C.30cm2 D.40cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為a與b、對(duì)角線(xiàn)長(zhǎng)為c的長(zhǎng)方形紙片ABCD,繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到長(zhǎng)方形FGCE,連接AF.通過(guò)用不同方法計(jì)算梯形ABEF的面積可驗(yàn)證勾股定理,請(qǐng)你寫(xiě)出驗(yàn)證的過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在紅城中學(xué)舉行的“我愛(ài)祖國(guó)”征文活動(dòng)中,七年級(jí)和八年級(jí)共收到征文118篇,且七年級(jí)收到的征文篇數(shù)是八年級(jí)收到的征文篇數(shù)的一半還少2篇,求七年級(jí)收到的征文有多少篇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,點(diǎn)P(﹣2,3)關(guān)于x軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為( )
A.(﹣2,﹣3) B.(2,﹣3) C.(﹣3,﹣2) D.(3,﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠1=∠2,則不一定能使△ABD≌△ACD的條件是( )
A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公園元旦期間,前往參觀(guān)的人非常多.這期間某一天某一時(shí)段,隨機(jī)調(diào)查了部分入園游客,統(tǒng)計(jì)了他們進(jìn)園前等候檢票的時(shí)間,并繪制成如下圖表.表中“10~20”表示等候檢票的時(shí)間大于或等于10min而小于20min,其它類(lèi)同.
(1)這里采用的調(diào)查方式是 (填“普查”或“抽樣調(diào)查”),樣本容量是 ;
(2)表中a= ,b= ,并請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)在調(diào)查人數(shù)里,若將時(shí)間分段內(nèi)的人數(shù)繪成扇形統(tǒng)計(jì)圖,則“40~50”的圓心角的度數(shù)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com