【題目】如圖,四邊形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,E為AB的中點(diǎn).
(1)求證:△ADC∽△ACB;
(2)CE與AD有怎樣的位置關(guān)系?試說(shuō)明理由;
(3)若AD=4,AB=6,求的值.
【答案】(1)證明見(jiàn)解析;(2)CE∥AD,理由見(jiàn)解析;(3).
【解析】試題分析:(1)根據(jù)角平分線的定義得到∠DAC=∠CAB,根據(jù)相似三角形的判定定理證明;
(2)根據(jù)相似三角形的性質(zhì)得到∠ACB=∠ADC=90°,根據(jù)直角三角形的性質(zhì)得到CE=AE,根據(jù)等腰三角形的性質(zhì)、平行線的判定定理證明;
(3)根據(jù)相似三角形的性質(zhì)列出比例式,計(jì)算即可.
試題解析:(1)∵AC平分∠DAB,
∴∠DAC=∠CAB,
又∵AC2=ABAD,
∴AD:AC=AC:AB,
∴△ADC∽△ACB;
(2)CE∥AD,
理由:∵△ADC∽△ACB,
∴∠ACB=∠ADC=90°,
又∵E為AB的中點(diǎn),
∴∠EAC=∠ECA,
∵∠DAC=∠CAE,
∴∠DAC=∠ECA,
∴CE∥AD;
(3)∵AD=4,AB=6,CE=AB=AE=3,
∵CE∥AD,
∴∠FCE=∠DAC,∠CEF=∠ADF,
∴△CEF∽△ADF,
∴==,
∴=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線與x軸相交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸交于點(diǎn)C,點(diǎn)D是拋物線的頂點(diǎn),連接AD、BD.
求△ABD的面積;
如圖2,連接AC、BC,若點(diǎn)P是直線AC上方拋物線上一動(dòng)點(diǎn),過(guò)P作PE//BC交AC于點(diǎn)E,作PQ//y軸交AC于點(diǎn)Q,當(dāng)△PQE周長(zhǎng)最大時(shí),將△PQE沿著直線AC平移,記移動(dòng)中的△PQE為,連接,求△PQE的周長(zhǎng)的最大值及的最小值;
如圖3,點(diǎn)G為x軸正半軸上一點(diǎn),且OG=OC,連接CG,過(guò)G作GH⊥AC于點(diǎn)H,將△CGH繞點(diǎn)O順時(shí)針旋轉(zhuǎn)(),記旋轉(zhuǎn)中的△CGH為,在旋轉(zhuǎn)過(guò)程中,直線,分別與直線AC交于點(diǎn)M,N, 能否成為等腰三角形?若能直接寫出所有滿足條件的的值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩個(gè)車間接到加工一批零件的任務(wù),從開始加工到完成這項(xiàng)任務(wù)共用了9天.其間,乙車間在加工2天后停止加工,引入新設(shè)備后繼續(xù)加工,直到與甲車間同時(shí)完成這項(xiàng)任務(wù)為止,設(shè)甲、乙兩個(gè)車間各自加工零件總數(shù)y(單位:件)與加時(shí)間x(單位:天)的對(duì)應(yīng)關(guān)系如圖1所示,由工廠統(tǒng)計(jì)數(shù)據(jù)可知,甲車間與乙車間加工零件總數(shù)之差z(單位:件)與加時(shí)間x(單位:天)的對(duì)應(yīng)關(guān)系如圖2所示,請(qǐng)根據(jù)圖象提供的信息回答:
圖中的值是__________;
第_________天時(shí),甲、乙兩個(gè)車間加工零件總數(shù)相同.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小東設(shè)計(jì)的“作矩形”的尺規(guī)作圖過(guò)程,已知:
求作:矩形
作法:如圖,
①作線段的垂直平分線角交于點(diǎn);
②連接并延長(zhǎng),在延長(zhǎng)線上截取
③連接
所以四邊形即為所求作的矩形
根據(jù)小東設(shè)計(jì)的尺規(guī)作圖過(guò)程
(1)使用直尺和圓規(guī),補(bǔ)全圖形:(保留作圖痕跡)
(2)完成下邊的證明:
證明: ,,
四邊形是平行四邊形( )(填推理的依據(jù))
四邊形是矩形( )(填推理的依據(jù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了深化改革,某校積極開展校本課程建設(shè),計(jì)劃成立“文學(xué)鑒賞”、“科學(xué)實(shí)驗(yàn)”、“音樂(lè)舞蹈”和“手工編織”等多個(gè)社團(tuán),要求每位學(xué)生都自主選擇其中一個(gè)社團(tuán).為此,隨機(jī)調(diào)查了本校各年級(jí)部分學(xué)生選擇社團(tuán)的意向,并將調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖表(不完善):
根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問(wèn)題:
(1)求次調(diào)查的學(xué)生總?cè)藬?shù)及a,b,c的值;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校共有1200名學(xué)生,試估計(jì)全校選擇“科學(xué)實(shí)驗(yàn)”社團(tuán)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOC與∠BOC互余,OD平分∠BOC,∠EOC=2∠AOE.
(1)若∠AOD=75°,求∠AOE的度數(shù).
(2)若∠DOE=54°,求∠EOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,BC為⊙O的直徑,點(diǎn)E為△ABC的內(nèi)心,連接AE并延長(zhǎng)交⊙O于D點(diǎn),連接BD并延長(zhǎng)至F,使得BDDF,連接CF、BE.
(1)求證:DBDE;
(2)求證:直線CF為⊙O的切線;
(3)若CF4,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的文字,解答問(wèn)題:大家知道是無(wú)理數(shù),而無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來(lái),但是由于1<<2,所以的整數(shù)部分為1,將減去其整數(shù)部分1,差就是小數(shù)部分,根據(jù)以上的內(nèi)容,解答下面的問(wèn)題:
(1)的整數(shù)部分是______,小數(shù)部分是______;
(2)的整數(shù)部分是______,小數(shù)部分是_____;
(3)若設(shè)整數(shù)部分是x,小數(shù)部分是y,求x﹣y的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com