【題目】函數(shù)y=kx+k,與y= 在同一坐標(biāo)系中的圖象大致如圖,則( )
A.K﹥0
B.K﹤0
C.-1﹤K﹤0
D.K﹤-1
【答案】A
【解析】由圖可知,函數(shù) 在第一、二、三象限中,可得k>0,又 反比例函數(shù) 在第一、三象限中, k>0,綜上所述,k>0.
【考點(diǎn)精析】關(guān)于本題考查的一次函數(shù)的性質(zhì)和一次函數(shù)的圖象和性質(zhì),需要了解一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當(dāng)k>0時(shí),y隨x的增大而增大(2)當(dāng)k<0時(shí),y隨x的增大而減;一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn)才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在ABCD中,E,F(xiàn)分別是邊AD,BC上的點(diǎn),且AE=CF,直線EF分別交BA的延長線、DC的延長線于點(diǎn)G,H,交BD于點(diǎn)O.
(1)求證:△ABE≌△CDF;
(2)連接DG,若DG=BG,則四邊形BEDF是什么特殊四邊形?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAC=90°,AD⊥BC,垂足為點(diǎn) D.下列說法中:①∠B的余角只有∠BAD;②∠B=∠C;③線段 AB 的長度表示點(diǎn) B 到直線 AC 的距離;④AB·AC=BC·AD;一定正確的有( )
A. 1 個(gè) B. 2 個(gè) C. 3 個(gè) D. 4 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明從家出發(fā),沿一條直道散步到離家450 m的郵局,經(jīng)過一段時(shí)間原路返回,剛好在第12 min回到家中.設(shè)小明出發(fā)第t min時(shí)的速度為v m/min,v與t之間的函數(shù)關(guān)系如圖所示(圖中的空心圈表示不包含這一點(diǎn)).
(1)小明出發(fā)第2 min時(shí)離家的距離為 m;
(2)當(dāng)2< t ≤6時(shí),求小明的速度a;
(3)求小明到達(dá)郵局的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算
(1)3x3x9﹣2xx3x8
(2)﹣12+20160+()2017×(﹣4)2018
(3)(x+4)(x﹣4)﹣(x﹣2)2
(4)ab(a+b)﹣(a﹣b)(a2+b2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲組的名工人12月份完成的總工作量比此月人均定額的倍多件,乙組的名工人12月份完成的總工作量比此月人均定額的倍少件.
(1)如果兩組工人實(shí)際完成的此月人均工作量相等,那么此月的人均定額是多少件?
(2)如果甲組工人實(shí)際完成的此月人均工作量比乙組工人實(shí)際完成的此月人均工作量少3件,那么此月人均定額是多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2012年6月1日起,國家實(shí)施了中央財(cái)政補(bǔ)貼條例支持高效節(jié)能電器的推廣使用,某款定速空調(diào)在條例實(shí)施后,每購買一臺(tái),客戶可獲財(cái)政補(bǔ)貼200元,若同樣用11萬元所購買的此款空調(diào)數(shù)臺(tái),條例實(shí)施后比實(shí)施前多10%.求條例實(shí)施前此款空調(diào)的單價(jià).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,把△ABC沿DE折疊,使點(diǎn)A落在點(diǎn)A’處,試探索∠1+∠2與∠A的關(guān)系.(證明).
(2)如圖2,BI平分∠ABC,CI平分∠ACB,把△ABC折疊,使點(diǎn)A與點(diǎn)I重合,若∠1+∠2=130°,求∠BIC的度數(shù);
(3)如圖3,在銳角△ABC中,BF⊥AC于點(diǎn)F,CG⊥AB于點(diǎn)G,BF、CG交于點(diǎn)H,把△ABC折疊使點(diǎn)A和點(diǎn)H重合,試探索∠BHC與∠1+∠2的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=α,∠COD=β(α>β),OC與OB重合,OD在∠AOB外,射線OM、ON分別是∠AOC、∠BOD的角平分線.
(1)①若α=100°,β=60°,則∠MON等于多少;
②在①的條件下∠COD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)n°(0<n<100(且n≠60)時(shí),求∠MON的度數(shù);
(2)直接寫出∠COD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)n°(0<n<360)時(shí)∠MON的值(用含α、β的式子表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com