【題目】如圖,方格紙中每個小方格都是長為1個單位的正方形.若學(xué)校位置的坐標(biāo)為A(12),解答以下問題:

(1)請在圖中建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并寫出圖書館B位置的坐標(biāo);

(2)若體育館位置的坐標(biāo)為C(3,3),請在坐標(biāo)系中標(biāo)出體育館的位置,并順次連接學(xué)校、圖書館、體育館,得到△ABC,求△ABC的面積.

【答案】(1) -3,-2);(2)10.

【解析】

(1)利用點A的坐標(biāo)畫出直角坐標(biāo)系;根據(jù)點的坐標(biāo)的意義描出點B;
(2)利用三角形的面積得到△ABC的面積.

解:(1)建立直角坐標(biāo)系如圖所示:

圖書館B位置的坐標(biāo)為(-3,-2);
(2)標(biāo)出體育館位置C如圖所示,觀察可得,△ABC中BC邊長為5,BC邊上的高為4,所以△ABC的面積為=×5×4=10.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)(是常數(shù),)在同一平面直角坐標(biāo)系的圖象可能是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是( 。

A. 2 B. C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)初中學(xué)生要租車去清華中學(xué)參加學(xué)習(xí)交流活動。已知出租汽車公司有甲、乙兩種客車,租1輛甲型客車和2輛乙型客車每人一座可恰好坐162人;租用2輛甲型客車和1輛乙型客車每人一座恰好坐144人,出租公司的租金價格如下:甲型320/輛,乙型460/輛。大江中學(xué)共有660名師生,學(xué)校準(zhǔn)備支付的租車的費用最多是5320元。

1)求甲、乙兩種型號的客車每輛各有多少個座位;

2)若要租用甲、乙共14輛,怎樣租車費用最低,并求出租車最低費用。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 直線x軸、y軸分別交于點A和點B,點CD分別為線段AB、OB的中點, POA上一動點, 當(dāng)PC+PD最小時, P的坐標(biāo)為(

A.-4,0B.-1,0C.(-2,0)D.(-3,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y1=ax2+bx+ca≠0)圖象的一部分,拋物線的頂點坐標(biāo)A1,3),與x軸的一個交點B40),直線y2=mx+nm≠0)與拋物線交于A,B兩點,下列結(jié)論:

①2a+b=0;②abc0;方程ax2+bx+c=3有兩個相等的實數(shù)根;拋物線與x軸的另一個交點是(﹣1,0);當(dāng)1x4時,有y2y1,

其中正確的是( )

A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為弘揚泰山文化,我市某校舉辦了“泰山詩文大賽”活動,小學(xué)、初中部根據(jù)初賽成績,各選出5名選手組成小學(xué)代表隊和初中代表隊參加學(xué)校決賽。兩個隊各選出的5名選手的決賽成績(滿分為100分)如下圖所示.

1)根據(jù)圖示填寫圖表;

3)計算兩隊決賽成績的方差并判斷哪一個代表隊選手成績較為穩(wěn)定.

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

小學(xué)部

85

初中部

85

100

2)結(jié)合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的決賽成績較好;

3)計算兩隊決賽成績的方差并判斷哪一個代表隊選手成績較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,,點在邊上,從點向點移動,點在邊上,從點向點移動,若點,均以的速度同時出發(fā),且當(dāng)一點移動終點時,另一點也隨之停止,連接,則線段的最小值是( ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個三角形能被一條線段分割成兩個等腰三角形,那么稱這條線段為這個三角形的特異線,稱這個三角形為特異三角形.

(1)如圖1,ABC是等腰銳角三角形,AB=AC(),若ABC的角平分線BDAC于點D,且BDABC的一條特異線,則BDC=______度;

(2)如圖2,ABC中,B=2C,線段AC的垂直平分線交AC于點D,交BC于點E.求證:AEABC的一條特異線;

(3)如圖3,已知ABC是特異三角形,且A=30°,B為鈍角,求出所有可能的B的度數(shù)(如有需要,可在答題卡相應(yīng)位置另外畫圖).

查看答案和解析>>

同步練習(xí)冊答案