【題目】如圖,在ABCD中,ABAC,對角線AC,BD相交于點O,將直線AC繞點O順時針旋轉(zhuǎn)一個角度αα≤90°),分別交線段BC,AD于點E,F,連接BF

1)如圖1,在旋轉(zhuǎn)的過程中,求證:OEOF;

2)如圖2,當(dāng)旋轉(zhuǎn)至90°時,判斷四邊形ABEF的形狀,并證明你的結(jié)論;

3)若AB1BC,且BFDF,求旋轉(zhuǎn)角度α的大。

【答案】1)證明見解析;(2)平行四邊形,理由見解析;(345°

【解析】

1)由平行四邊形的性質(zhì)得出∠OAF=∠OCE,OAOC,進(jìn)而判斷出AOF≌△COE,即可得出結(jié)論;

2)先判斷出∠BAC=∠AOF,得出ABEF,即可得出結(jié)論;

3)先求出AC2,進(jìn)而得出A1AB,即可判斷出ABO是等腰直角三角形,進(jìn)一步判斷出BFD是等腰三角形,利用等腰三角形的三線合一得出∠BOF90°,即可得出結(jié)論.

1)證明:在ABCD中,ADBC,

∴∠OAF=∠OCE,

OAOC,∠AOF=∠COE,

∴△AOF≌△COEASA),

OEOF;

2)當(dāng)旋轉(zhuǎn)角為90°時,四邊形ABEF是平行四邊形,理由:

ABAC,

∴∠BAC90°,

∵∠AOF90°,

∴∠BAC=∠AOF,

ABEF,

AFBE

∴四邊形ABEF是平行四邊形;

3)在RtABC中,AB1,BC,

AC2,

OA1AB,

∴△ABO是等腰直角三角形,

∴∠AOB45°,

BFDF,

∴△BFD是等腰三角形,

∵四邊形ABCD是平行四邊形,

OBOD,

OFBD(等腰三角形底邊上的中線是底邊上的高),

∴∠BOF90°,

∴∠α=∠AOF=∠BOF﹣∠AOB45°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】早晨,小剛沿著通往學(xué)校唯一的一條路(直路)上學(xué),途中發(fā)現(xiàn)忘帶飯盒,停下來往家里打電話,媽媽接到電話后帶上飯盒馬上趕往學(xué)校,同時小剛返回,兩人相遇后,小剛立即趕往學(xué)校,媽媽回家,15分鐘后媽媽到家,再經(jīng)過3分鐘小剛到達(dá)學(xué)校,小剛始終以100米/分的速度步行,小剛和媽媽的距離y(單位:米)與小剛打完電話后的步行時間t(單位:分)之間的函數(shù)關(guān)系如圖,下列四種說法中錯誤的是( )

A. 打電話時,小剛和媽媽的距離為1250米

B. 打完電話后,經(jīng)過23分鐘小剛到達(dá)學(xué)校

C. 小剛和媽媽相遇后,媽媽回家的速度為150米/分

D. 小剛家與學(xué)校的距離為2550米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=﹣x2+bx的圖象與x軸的正半軸交于點A(4,0),過A點的直線與y軸的正半軸交于點B,與二次函數(shù)的圖象交于另一點C,過點C作CHx軸,垂足為H.設(shè)二次函數(shù)圖象的頂點為D,其對稱軸與直線AB及x軸分別交于點E和點F.

(1)求這個二次函數(shù)的解析式;

(2)如果CE=3BC,求點B的坐標(biāo);

(3)如果DHE是以DH為底邊的等腰三角形,求點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:b是最小的正整數(shù),且a、b滿足0,請回答問題:

1)請直接寫出a、b、c的值;

2)數(shù)軸上a、b、c所對應(yīng)的點分別為A、B、C,點MAB之間的一個動點,其對應(yīng)的數(shù)為m,請化簡(請寫出化簡過程);

3)在(1)(2)的條件下,點A、BC開始在數(shù)軸上運動.若點A以每秒1個單位長度的速度向左運動.同時,點B和點C分別以每秒2個單位長度和5個單位長度的速度向右運動.假設(shè)t秒鐘過后,若點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB.請問:BCAB的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解并解答:

(1)我們把多項式叫做完全平方式,在運用完全平方公式進(jìn)行因式分解時,關(guān)鍵是判斷這個多項式是不是一個完全平方式.同樣地,把一個多項式進(jìn)行部分因式分解可以來解決求代數(shù)式值的最大(或最小)值問題.

例如:①

是非負(fù)數(shù),即0

+2≥2

則這個代數(shù)式的最小值是_______,這時相應(yīng)的的值是_______.

=

=

=

=

是非負(fù)數(shù),即0

-7-7

則這個代數(shù)式的最小值是____,這時相應(yīng)的的值是______.

(2)仿照上述方法求代數(shù)式 的最大(或最小)值,并寫出相應(yīng)的的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A是反比例函數(shù)的圖象上的一個動點,連接OA,若將線段OA繞點O順時針旋轉(zhuǎn)90°得到線段OB,則點B所在圖象的函數(shù)表達(dá)式為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,由邊長均為1個單位的小正方形組成的網(wǎng)格圖中,點都在格點上。

1的面積為__________________________;

2)以為邊畫出一個與全等的三角形,并進(jìn)一步探究:滿足條件的三角形可以作出_____;

3)在直線上確定點,使的長度最短.(畫出示意圖,并標(biāo)明點的位置即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了保護(hù)環(huán)境,某開發(fā)區(qū)綜合治理指揮部決定購買A,B兩種型號的污水處理設(shè)備共10臺.已知用90萬元購買A型號的污水處理設(shè)備的臺數(shù)與用75萬元購買B型號的污水處理設(shè)備的臺數(shù)相同,每臺設(shè)備價格及月處理污水量如下表所示:

污水處理設(shè)備

A型

B型

價格(萬元/臺)

m

m-3

月處理污水量(噸/臺)

220

180

(1)求m的值;

(2)由于受資金限制,指揮部用于購買污水處理設(shè)備的資金不超過165萬元,問有多少種購買方案?并求出每月最多處理污水量的噸數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,過點C的直線MNAB,DAB邊上一點,過點DDEBC,交直線MNE,垂足為F,連接CD、BE

1)求證:CEAD;

2)當(dāng)DAB中點時,四邊形BECD是什么特殊四邊形?說明你的理由.

查看答案和解析>>

同步練習(xí)冊答案