【題目】如圖,由邊長均為1個單位的小正方形組成的網(wǎng)格圖中,點都在格點上。

1的面積為__________________________;

2)以為邊畫出一個與全等的三角形,并進(jìn)一步探究:滿足條件的三角形可以作出_____

3)在直線上確定點,使的長度最短.(畫出示意圖,并標(biāo)明點的位置即可)

【答案】13;(2)見解析;1個(3)見解析

【解析】

1)根據(jù)題意,用矩形減去三角形周圍的三角形即可得出的面積;

2)根據(jù)軸對稱性,以AC為軸,作△ABC的對稱三角形即可;有且只有一個;

3)根據(jù)兩點之間線段最短,使PC+PB在一條直線為最短,作C關(guān)于直線l的對稱點C′,連接C′B,與直線l的交點即為點P.

1)根據(jù)題意,得

2

根據(jù)題意,如圖△AB′C≌△ABC,根據(jù)軸對稱性,滿足條件的三角形可作出1個;

3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的頂點A. C分別在xy軸的正半軸上,DBC邊上的點,反比例函數(shù)y= (k0)在第一象限內(nèi)的圖象經(jīng)過點D(m,2)AB邊上的點E(3,).

(1)求反比例函數(shù)的表達(dá)式和m的值;

(2)將矩形OABC的進(jìn)行折疊,使點O于點D重合,折痕分別與x軸、y軸正半軸交于點F,G,求折痕FG所在直線的函數(shù)關(guān)系式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD為⊙O的直徑,CDAB,垂足為點FAOBC,垂足為點E,CE=2

1)求AB的長;

2)求⊙O的半徑.

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/13/1923086297137152/1923946164551680/STEM/edc8c851f08548f08f9e61b4dab2d43e.png]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,ABAC,對角線AC,BD相交于點O,將直線AC繞點O順時針旋轉(zhuǎn)一個角度αα≤90°),分別交線段BC,AD于點E,F,連接BF

1)如圖1,在旋轉(zhuǎn)的過程中,求證:OEOF;

2)如圖2,當(dāng)旋轉(zhuǎn)至90°時,判斷四邊形ABEF的形狀,并證明你的結(jié)論;

3)若AB1BC,且BFDF,求旋轉(zhuǎn)角度α的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)七、八年級各選派10名選手參加學(xué)校舉辦的愛我荊門知識競賽,計分采用10分制,選手得分均為整數(shù),成績達(dá)到6分或6分以上為合格,達(dá)到9分或10分為優(yōu)秀.這次競賽后,七、八年級兩支代表隊選手成績分布的條形統(tǒng)計圖和成績統(tǒng)計分析表如下,其中七年級代表隊得6分、10分的選手人數(shù)分別為a,b

隊別

平均分

中位數(shù)

方差

合格率

優(yōu)秀率

七年級

6.7

m

3.41

90%

n

八年級

7.1

7.5

1.69

80%

10%

1)請依據(jù)圖表中的數(shù)據(jù),求ab的值;

2)直接寫出表中的mn的值;

3)有人說七年級的合格率、優(yōu)秀率均高于八年級,所以七年級隊成績比八年級隊好,但也有人說八年級隊成績比七年級隊好.請你給出兩條支持八年級隊成績好的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩家綠化養(yǎng)護(hù)公司各自推出了校園綠化養(yǎng)護(hù)服務(wù)的收費方案.

甲公司方案:每月的養(yǎng)護(hù)費用y(元)與綠化面積x(平方米)是一次函數(shù)關(guān)系,如圖所示.

乙公司方案:綠化面積不超過1000平方米時,每月收取費用5500元;綠化面積超過1000平方米時,每月在收取5500元的基礎(chǔ)上,超過部分每平方米收取4.

(1)求如圖所示的yx的函數(shù)解析式;(不要求寫取值范圍)

(2)如果某學(xué)校目前的綠化面積是1200平方米.試通過計算說明:選擇哪家公司的服務(wù),每月的綠化養(yǎng)護(hù)費用較少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于任意有理數(shù)a,b,定義運算:a⊙b=a(a+b)﹣1,等式右邊是通常的加法、減法、乘法運算,例如,2⊙5=2×(2+5)﹣1=13;(﹣3)⊙(﹣5)=﹣3×(﹣3﹣5)﹣1=23.

(1)求(﹣2)⊙3的值;

(2)對于任意有理數(shù)m,n,請你重新定義一種運算“”,使得5⊕3=20,寫出你定義的運算:m⊕n=   (用含m,n的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:順次連接矩形各邊的中點,得到一個菱形,如圖①;再順次連接菱形各邊的中點,得到一個新的矩形.如圖②;然后順次連接新的矩形各邊的中點,得到一個新的菱形,如圖③;如此反復(fù)操作下去,則第3個圖形中直角三角形的個數(shù)有______個,第2018個圖形中直角三角形的個數(shù)有______個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=10cm,BC=15cm,點P從A出發(fā)沿AC向C點以1厘米/秒的速度勻速移動;點Q從C出發(fā)沿CB向B點以2厘米/秒的速度勻速移動.點P、Q分別從起點同時出發(fā),移動到某一位置時所需時間為t秒

當(dāng)t = 4時,求線段PQ的長度

(2)當(dāng)t為何值時,△PCQ是等腰三角形?

(3)當(dāng)t為何值時,△PCQ的面積等于16cm2?

(4)當(dāng)t為何值時,△PCQ∽△ACB

查看答案和解析>>

同步練習(xí)冊答案