【題目】講完有理數(shù)的除法后,老師在課堂上出了一道計算題:15÷(-8).不一會兒,不少同學算出了答案,老師把班上同學的解題過程歸類寫到黑板上.

方法一:原式=×(-)=-=-1;

方法二:原式=(15+)×(-)=15×(-)+×(-)=-=-1;

方法三:原式=(16-)÷(-8)=16÷(-8)-÷(-8)=-2+=-1.

對這三種方法,大家議論紛紛,你認為哪種方法最好?請說出理由,并說說本題對你有何啟發(fā).

【答案】方法三最好,理由見解析.

【解析】

方法一是將帶分數(shù)化為假分數(shù),再根據(jù)有理數(shù)除法進行計算,方法二是將帶分數(shù)化為整數(shù)加分數(shù)再除以分數(shù),然后根據(jù)除法法則轉化為乘法,利用乘法分配律進行計算,方法三是帶分數(shù)化成整數(shù)減去分數(shù),再除以分數(shù),根據(jù)有理數(shù)除法轉化為乘法,再根據(jù)乘法分配律進行計算,三種方法通過對比,方法三計算較為簡便.

方法三最好,理由:通過這種方法將一個原本復雜的問題化得非常簡潔,

啟發(fā):解決問題的方法有多種,我們可從中選擇最簡單的方法來解決問題,即一題多解,多解從優(yōu).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( ).

A. m=-2是方程m-2=0的解 B. m=6是方程3m+18=0的解

C. x=-1是方程-=0的解 D. x=是方程10x=1的解

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文藝團體為希望工程募捐組織了一場義演,共售出1000張票,籌出票款6920元且每張成人票8元,學生票5元

1問成人票與學生票各售出多少張?

2若票價不變仍售出1000張票,所得的票款可能是7290元嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從①∠1=∠2;②∠C=∠D;③∠A=∠F三個條件中選出兩個作為已知條件,另一個作為結論所組成的命題中,正確命題的個數(shù)為( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知長方形ABCD中AB=8cm,BC=10cm,在邊CD上取一點E,將ADE折疊使點D恰好落在BC邊上的點F,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某農(nóng)場擬建三件矩形飼養(yǎng)室,飼養(yǎng)室一面靠現(xiàn)有墻(墻可用長≤20m),中間用兩道墻隔開,已知計劃中的建筑材料可建圍墻的總長為60m,設飼養(yǎng)室寬為x(m),總占地面積為y(m2)(如圖所示).

(1)求y關于x的函數(shù)表達式,并直接寫出自變量x的取值范圍;
(2)三間飼養(yǎng)室占地總面積有可能達到210m2嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,點OAC邊上的一個動點,過點O作直線MNBC,設MN交∠BCA的角平分線于點E,交∠BCA的外角平分線于點F.

(1)求證:EO=FO;

(2)當點O運動到何處時,四邊形AECF是矩形?并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為倡導低碳生活,綠色出行,某自行車俱樂部利用周末組織“遠游騎行”活動.自行車隊從甲地出發(fā),途徑乙地短暫休息完成補給后,繼續(xù)騎行至目的地丙地,自行車隊出發(fā)1小時后,恰有一輛郵政車從甲地出發(fā),沿自行車隊行進路線前往丙地,在丙地完成2小時裝卸工作后按原路返回甲地,自行車隊與郵政車行駛速度均保持不變,并且郵政車行駛速度是自行車隊行駛速度的2.5倍,如圖表示自行車隊、郵政車離甲地的路程y(km)與自行車隊離開甲地時間x(h)的函數(shù)關系圖象,請根據(jù)圖象提供的信息解答下列各題:
(1)自行車隊行駛的速度是km/h;
(2)郵政車出發(fā)多少小時與自行車隊首次相遇?
(3)郵政車在返程途中與自行車隊再次相遇時的地點距離甲地多遠?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.動點M,N從點C同時出發(fā),均以每秒1cm的速度分別沿CA、CB向終點A,B移動,同時動點P從點B出發(fā),以每秒2cm的速度沿BA向終點A移動,連接PM,PN,設移動時間為t(單位:秒,0<t<2.5).

(1)當t為何值時,以A,P,M為頂點的三角形與△ABC相似?
(2)是否存在某一時刻t,使四邊形APNC的面積S有最小值?若存在,求S的最小值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案