【題目】如圖,在中點是邊上的一點, ,將沿折疊得到與相交于點.
(1)求的度數(shù);
(2)求的度數(shù).
【答案】(1);(2)
【解析】
(1)根據(jù)折疊的特點得出∠∠,再根據(jù)三角形一個外角等于它不相鄰兩個內(nèi)角之和,即可得出答案;
(2)根據(jù)已知求出∠ADB的值,再根據(jù)折疊的特點得出∠ADE=∠ADB,最后根據(jù)∠EDF=∠EDA -∠ADF,即可得出答案.
(1)∵沿折疊得到,
∴∠∠,
∵∠B=50°,∠BAD=30°,
∴∠AFC=∠B+∠BAD+∠DAF;
(2)∵∠B=50°,∠BAD=30°,
∴∠ADB=180°-50°-30°=100°,
∵沿折疊得到,
∴∠EDA=∠BDA=100°,
∴∠EDF=∠EDA -∠ADF =∠EDA –(∠B+∠BAD).
科目:初中數(shù)學 來源: 題型:
【題目】某工廠以每千克200元的價格購進甲種原料360千克,用于生產(chǎn)A、B兩種產(chǎn)品,生產(chǎn)1件A產(chǎn)品或1件B產(chǎn)品所需甲、乙兩種原料的千克數(shù)如下表:
產(chǎn)品/原料 | A | B |
甲(千克) | 9 | 4 |
乙(千克) | 3 | 10 |
乙種原料的價格為每千克300元,A產(chǎn)品每件售價3000元,B產(chǎn)品每件售價4200元,現(xiàn)將甲種原料全部用完,設(shè)生產(chǎn)A產(chǎn)品x件,B產(chǎn)品m件,公司獲得的總利潤為y元.
(1)寫出m與x的關(guān)系式;
(2)求y與x的關(guān)系式;
(3)若使用乙種原料不超過510千克,生產(chǎn)A種產(chǎn)品多少件時,公司獲利最大?最大利潤為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①是一種包裝盒的表面展開圖,將它圍起來可得到一個幾何體的模型.
(1)請說出這個幾何體模型的最確切的名稱是__ __;
(2)如圖②是根據(jù) a,h的取值畫出的幾何體的主視圖和俯視圖(圖中的粗實線表示的正方形(中間一條虛線)和三角形),請在網(wǎng)格中畫出該幾何體的左視圖;
(3)在(2)的條件下,已知h=20 cm,求該幾何體的表面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC沿角平分線BD所在直線翻折,頂點A恰好落在邊BC的中點E處,AE=BD,那么tan∠ABD=( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖 AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點O.
(1)求證AD=AE;
(2)連接OA,BC,試判斷直線OA,BC的關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的兩條對角線分別長6和8,點P是對角統(tǒng)AC上的一個動點,點M、N分別是邊AB、BC的中點,則PM+PN的最小值是( )
A. 10 B. 8 C. 5 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,AE是BC邊上的中線,∠C=45°,sinB=,AD=1.
(1)求BC的長;
(2)求tan∠DAE的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AC=6,BD=6,E是BC邊的中點,P,M分別是AC,AB上的動點,連接PE,PM,則PE+PM的最小值是( 。
A. 6 B. 3 C. 2 D. 4.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com