精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平面直角坐標系中,點A(0,4),B(3,0),連接AB,將△AOB沿過點B的直線折疊,使點A落在x軸上的點A′處,折痕所在的直線交y軸正半軸于點C,則直線BC的解析式為

【答案】y=﹣ x+
【解析】解:∵A(0,4),B(3,0),
∴OA=4,OB=3,
在Rt△OAB中,AB= =5,
∵△AOB沿過點B的直線折疊,使點A落在x軸上的點A′處,
∴BA′=BA=5,CA′=CA,
∴OA′=BA′﹣OB=5﹣3=2,
設OC=t,則CA=CA′=4﹣t,
在Rt△OA′C中,
∵OC2+OA′2=CA′2 ,
∴t2+22=(4﹣t)2 , 解得t= ,
∴C點坐標為(0, ),
設直線BC的解析式為y=kx+b,
把B(3,0)、C(0, )代入得 ,解得 ,
∴直線BC的解析式為y=﹣ x+
所以答案是:y=﹣ x+
【考點精析】利用確定一次函數的表達式和翻折變換(折疊問題)對題目進行判斷即可得到答案,需要熟知確定一個一次函數,需要確定一次函數定義式y(tǒng)=kx+b(k不等于0)中的常數k和b.解這類問題的一般方法是待定系數法;折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖所示的拋物線對稱軸是直線x=1,與x軸有兩個交點,與y軸交點坐標是(0,3),把它向下平移2個單位后,得到新的拋物線解析式是 y=ax2+bx+c,以下四個結論:
①b2﹣4ac<0,②abc<0,③4a+2b+c=1,④a﹣b+c>10中,判斷正確的有(

A.②③④
B.①②③
C.②③
D.①④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,小明在一塊平地上測山高,先在B處測得山頂A的仰角為30°,然后向山腳直行100米到達C處,再測得山頂A的仰角為45°,求山高AD是多少?(結果保留整數,測角儀忽略不計,參考數據 ≈1.414, ≈1.73)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,A為某旅游景區(qū)的最佳觀景點,游客可從B處乘坐纜車先到達小觀景平臺DE觀景,然后再由E處繼續(xù)乘坐纜車到達A處,返程時從A處乘坐升降電梯直接到達C處,已知:AC⊥BC于C,DE∥BC,AC=200.4米,BD=100米,∠α=30°,∠β=70°,則AE的長度約為米.(參考數據:sin70≈0.94,cos70°≈0.34,tan70°≈2.25).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在菱形ABCD中,E、F分別是AB和BC上的點,且BE=BF.

(1)求證:△ADE≌△CDF;
(2)若∠A=40°,∠DEF=65°,求∠DFC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明到服裝店進行社會實踐活動,服裝店經理讓小明幫助解決以下問題:服裝店準備購進甲乙兩種服裝,甲種每件進價80元,售價120元,乙種每件進價60元,售價90元.計劃購進兩種服裝共100件,其中甲種服裝不少于65件.
(1)若購進這100件服裝的費用不得超過7500元,則甲種服裝最多購進多少件??
(2)在(1)的條件下,該服裝店對甲種服裝以每件優(yōu)惠a(0<a<20)元的價格進行促銷活動,乙種服裝價格不變,那么該服裝店應如何調整進貨方案才能獲得最大利潤?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,圖①是一塊邊長為1,周長記為P1的等邊三角形紙板,沿圖①的底邊剪去一塊邊長為 的等邊三角形紙板后得到圖②,然后沿同一底邊依次剪去一塊更小的等邊三角形紙板(即其邊長為前一塊被剪掉的等邊三角形紙板邊長的 )后得到圖 ③,④…,記第n塊剪掉的等邊三角形紙板的周長為Pn , 則Pn=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AD、BC是⊙O的兩條互相垂直的直徑,點P從點O出發(fā),沿O→C→D→O的路線勻速運動.設∠APB=y(單位:度),那么y與點P運動的時間x(單位:秒)的關系圖是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明有一個呈等腰直角三角形的積木盒,現在積木盒中只剩下如圖1所示的九個空格,圖2是可供選擇的A,B,C,D四塊積木.

(1)小明選擇把積木A和B放入圖3,要求積木A和B的九個小圓恰好能分別與圖3中的九個小圓重合,請在圖3中畫出他放入方式的示意圖(溫馨提醒:積木A和B的連接小圓的小線段還是要畫上哦。
(2)現從A、B、C、D四塊積木中任選兩塊,請用列表法或畫樹狀圖法求恰好能全部不重疊放入的概率

查看答案和解析>>

同步練習冊答案