【題目】如圖,圓P的半徑為10,AB是圓上任意兩點,且AB12,以AB為邊作正方ABCD(D、P在直線AB的兩側(cè)),若AB邊繞點P旋轉(zhuǎn)一周,則CD邊掃過的面積為(  ).

A.0B.36πC.D.

【答案】B

【解析】

連接PAPD,過點PPE垂直AB于點E,延長PECD于點F,根據(jù)垂徑定理可得出AE=BE=AB,利用勾股定理即可求出PE的長度,再根據(jù)平行線的性質(zhì)結(jié)合正方形的性質(zhì)即可得出EF=BC=AB,DF=AE,根據(jù)圓環(huán)的面積公式即可得出結(jié)論.

連接PA、PD,過點PPE垂直AB于點E,延長PECD于點F,如圖所示.

ABP上一弦,且PEAB,

AEBEAB6,

∵四邊形ABCD是正方形,

∴∠DAE=∠ADF=∠DFE90°,

∴四邊形AEFD是矩形,

DFAE6,

∵若AB邊繞點P旋轉(zhuǎn)一周,則CD邊掃過的圖形為以PF為內(nèi)圓半徑、以PD為外圓半徑的圓環(huán).

SπPD2πPF2π(PD2PF2)πDF236π,

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為6的正方形ABCD中,點E、F、G分別在邊AB、ADCD上,EGBF交于點I,AE=2BF=EG,DG>AE,則DI的最小值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線軸交于A,B兩點(A點在B點的左側(cè)),與y軸交于點C,拋物線的對稱軸為x=1.

(1)求拋物線的表達(dá)式;

(2)若CDx軸,點D在點C的左側(cè), ,求點D的坐標(biāo);

(3)在(2)的條件下,將拋物線在直線x=t右側(cè)的部分沿直線x=t翻折后的圖形記為G,若圖形G與線段CD有公共點,請直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市出租車起步價是5元(3千米及3千米以內(nèi)為起步價),以后每增加1千米加收1元,不足1千米按1千米收費.

1)寫出收費y(元)與行駛里程x(千米)之間的函數(shù)關(guān)系式.

2)小黃在社會調(diào)查活動中,了解到一周內(nèi)某出租車載客307次,請補(bǔ)全如下條形統(tǒng)計圖,并求該出租車這7天運營收入的平均數(shù).

3)如果出租車1天運營成本是60元,請根據(jù)(2)中數(shù)據(jù)計算出租車司機(jī)一個月的收入(以30天計).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點E,F,GH分別在邊ABBCCDDA上,AECG,AHCF,且EG平分∠HEF

(1)求證:△AEH≌△CGF

(2)若∠EFG90°.求證:四邊形EFGH是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB3cmAD4cmEF經(jīng)過對角線BD的中點O,分別交AD,BC于點EF

1)求證:△BOF≌△DOE

2)當(dāng)EFBD時,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中.以點B為圓心,以BC為半徑作弧,分別交ACAB于點D,E,連接DE,若DEDC,AE4AD5,則_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知直角三角形ABC,∠ACB90°,∠BAC30°,點DAC邊上一點,過DDEAB于點E,連接BD,點FBD中點,連接EFCF

1)發(fā)現(xiàn)問題:線段EF,CF之間的數(shù)量關(guān)系為_____;∠EFC的度數(shù)為_____

2)拓展與探究:若將△AED繞點A按順時針方向旋轉(zhuǎn)α角(0°<α30°),如圖2所示,(1)中的結(jié)論還成立嗎?請說明理由;

3)拓展與運用:如圖3所示,若△AED繞點A旋轉(zhuǎn)的過程中,當(dāng)點D落到AB邊上時,AB邊上另有一點GADDGGB,BC3,連接EG,請直接寫出EG的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB = AC,點D是邊BC的中點,過點A、D分別作BC與AB的平行線,相交于點E,連結(jié)EC、AD.

求證:四邊形ADCE是矩形.

查看答案和解析>>

同步練習(xí)冊答案