【題目】如圖,在正方形ABCD中,E是AB邊上一點,F是AD延長線上一點,BE=DF.
(1)求證:CE=CF;
(2)若點G在AD邊上,且∠GCE=45°,BE=3,DG=5,求GE的長.
【答案】(1)見解析;(2)8.
【解析】(1)根據(jù)正方形性質(zhì),由(SAS)證△CBE≌△CDF,可得CE=CF;
(2)由(1)△CBE≌△CDF,得∠BCE=∠DCF,故∠BCE+∠ECD=∠DCF+∠ECD,因此,∠ECF=∠BCD=90°,再證∠GCF=∠ECF-∠GCE=45°=∠GCE,可證得△ECG≌△FCG,所以GE=GF=DG+DF=DG+BE.
(1)證明:∵四邊形ABCD是正方形,
∴BC=DC,∠B=∠FDC=90°.
在△CBE和△CDF中,
EB=DF,∠B=∠FDC,BC=DC,
∴△CBE≌△CDF(SAS),
∴CE=CF;
(2)解:由(1)得△CBE≌△CDF,
∴∠BCE=∠DCF,
∴∠BCE+∠ECD=∠DCF+∠ECD,
即∠ECF=∠BCD=90°.
又∵∠GCE=45°,
∴∠GCF=∠ECF-∠GCE=45°=∠GCE.
∵在△ECG與△FCG中,
CE=CF,∠GCE=∠GCF,GC=GC,
∴△ECG≌△FCG(SAS),
∴GE=GF=DG+DF=DG+BE=3+5=8.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊三角形的頂點A(1,1)、B(3,1),規(guī)定把等邊△ABC“先沿x軸翻折,再向左平移1個單位”為一次變換,如果這樣連續(xù)經(jīng)過2018次變換后,等邊△ABC的頂點C的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長方形中,為平面直角坐標系的原點,點在軸上,點在軸上,點在第一象限內(nèi),點從原點出發(fā),以每秒個單位長度的速度沿著的路線移動(即沿著長方形的邊移動一周).
(1)分別求出,兩點的坐標;
(2)當點移動了秒時,求出點的坐標;
(3)在移動過程中,當三角形的面積是時,求滿足條件的點的坐標及相應的點移動的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)y=(x-a)(x-3)(0<a<3)的圖象與x軸交于點A、B(點A在點B的左側),與y軸交于點D,過其頂點C作直線CP⊥x軸,垂足為點P,連接AD、BC.
(1)求點A、B、D的坐標;
(2)若△AOD與△BPC相似,求a的值;
(3)點D、O、C、B能否在同一個圓上,若能,求出a的值,若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D為線段BC上一點(不含端點),AP平分∠BAD交BC于E,PC與AD的延長線交于點F,連接EF,且∠PEF=∠AED.
(1)求證:AB=AF;
(2)若△ABC是等邊三角形.
①求∠APC的大小;
②想線AP,PF,PC之間滿足怎樣的數(shù)量關系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)軸上、、三點所代表的數(shù)分別是、、,且.若下列選項中,有一個表示、、三點在數(shù)軸上的位置關系,則此選項為何?( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l1∥l2∥l3,等腰直角三角形ABC的三個頂點A,B,C分別在l1,l2,l3上,∠ACB=90°,AC交l2于點D,已知l1與l2的距離為1,l2與l3的距離為3,則的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖, ,,,,垂足為點,點為的中點.
(1) 求證:;
(2) 求證:≌;
(3) 聯(lián)結,試判斷與 的位置關系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線l1:y=kx+b經(jīng)過點A(5,0),B(1,4).
(1)求直線AB的函數(shù)關系式;
(2)若直線l2:y=2x-4與直線AB相交于點C,求點C的坐標;
(3)過點P(m,0)作x軸的垂線,分別交直線點l1,l2與點M,N,若m>3, 當MN=3時,求m 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com