【題目】2017年金卉莊園“新春祈福燈會”前夕,我市某工藝廠設(shè)計了一款成本為20元/件的工藝品投放市場進行試銷,經(jīng)過調(diào)查,得到如下數(shù)據(jù):

銷售單價 (元/件)

...

30

40

50

60

...

每天銷售量 (件)

...

200

180

160

140

...

(1)已知上表數(shù)據(jù)滿足以下三個函數(shù)模型中的一個:①;;為常數(shù), 中,請你求出的函數(shù)關(guān)系式(不必寫自變量的范圍);

(2)求工藝廠試銷該工藝品每天獲得的利潤的函數(shù)關(guān)系式,并求當(dāng)銷售單價為多少時,每天獲得的利潤最大?最大利潤是多少?

(3)孝感市物價部門規(guī)定,該工藝品銷售單價最高不能超過72元/件,那么銷售單價定為多少時,工藝廠試銷工藝品每天獲得的利潤最大?

【答案】1;(2當(dāng)銷售單價75元/件時,每天獲得的利潤最大;最大利潤是6050元3銷售單價定為72元/件時,工藝廠試銷工藝品每天獲得的利潤最大

【解析】試題分析:(1)觀察表中xy的各組對應(yīng)值,可以發(fā)現(xiàn)y隨著x的均勻增大而均勻減小,因此可以確定函數(shù)關(guān)系式為一次函數(shù),由此即可得;

2)根據(jù)利潤=銷售總價-成本總價,由(1)中函數(shù)關(guān)系式得出,進而利用二次函數(shù)最值求法得出即可;

3)利用二次函數(shù)的增減性,結(jié)合對稱軸即可得出答案.

試題解析:1觀察表格中的數(shù)據(jù)可以發(fā)現(xiàn)y隨著x的均勻增大而均勻減小,因此可以確定函數(shù)關(guān)系式為一次函數(shù),

將(30,200)、(40,180)分別代入y=kx+b,得: ,解得: ,

所以;

(2)依題意可知:

, 有最大值,

當(dāng), 元,

當(dāng)銷售單價75元/件時,每天獲得的利潤最大;最大利潤是6050元;

(3)由(2)中易知, 的函數(shù)圖象是一個開口向下的拋物線,所以在對稱軸直線的左側(cè), 的增大而增大,

x72, 當(dāng)時, w才能最大,

銷售單價定為72元/件時,工藝廠試銷工藝品每天獲得的利潤最大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為O的直徑BA延長線上的一點,PC與O相切,切點為C,點D是上一點,連接PD.已知PC=PD=BC.下列結(jié)論:

(1)PD與O相切;(2)四邊形PCBD是菱形;(3)PO=AB;(4)PDB=120°.

其中正確的個數(shù)為(

A.4個 B.3個 C.2個 D.1個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖四邊形ABCD是一塊草坪,量得四邊長AB=3m,BC=4mDC=12m,AD=13m,B=90°,求這塊草坪的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,邊上的一點,,動點從點出發(fā),以每秒1個單位的速度沿著邊向終點運動,連接.設(shè)點運動的時間為秒.

1)求的長;

2)當(dāng)為多少秒時,是直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,EAD邊的中點.

(1)用直尺和圓規(guī)作⊙O,使⊙O 經(jīng)過B、C、E三點;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);

(2)若正方形的邊長為4,求(1)中所作⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線軸交于A(4,0)B(6,0)兩點,與軸交于點C(0,3).

(1)求拋物線的解析式;

(2)點P從點O出發(fā),以每秒2個單位長度的速度向點B運動,同時點E也從點O出發(fā),以每秒1個單位長度的速度向點C運動,設(shè)點P的運動時間為t秒(0<t<3.

①過點Ex軸的平行線,與BC相交于點D(如圖所示),當(dāng)t為何值時,△PDE的面積最大,并求出這個最大值;

②當(dāng)t =2時,拋物線的對稱軸上是否存在點F,使△EFP為直角三角形?若存在,請你求出點F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°AB=AC,點EAC上(且不與點A,C重合),在△ABC的外部作△CED,使∠CED=90°DE=CE,連接AD,分別以ABAD為鄰邊作平行四邊形ABFD,連接AF

1)請直接寫出線段AF,AE的數(shù)量關(guān)系 ;

2)將△CED繞點C逆時針旋轉(zhuǎn),當(dāng)點E在線段BC上時,如圖,連接AE,請判斷線段AF,AE的數(shù)量關(guān)系,并證明你的結(jié)論;

3)在圖的基礎(chǔ)上,將△CED繞點C繼續(xù)逆時針旋轉(zhuǎn),請判斷(2)問中的結(jié)論是否發(fā)生變化?若不變,結(jié)合圖寫出證明過程;若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解該校九年級學(xué)生對藍球、乒乓球、羽毛球、足球四種球類運動項目的喜愛情況,對九年級部分學(xué)生進行了隨機抽樣調(diào)查,每名學(xué)生必須且只能選擇最喜愛的一項運動項目,將調(diào)查結(jié)果統(tǒng)計后繪制成如圖兩幅不完整的統(tǒng)計圖,請根據(jù)圖中的信息,回答下列問題:

1)這次被抽查的學(xué)生有 人;請補全條形統(tǒng)計圖;

2)在統(tǒng)計圖2中,乒乓球對應(yīng)扇形的圓心角是 度;

3)若該校九年級共有480名學(xué)生,估計該校九年級最喜歡足球的學(xué)生約有 人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了節(jié)省材料,某水產(chǎn)養(yǎng)殖戶利用水庫的岸堤(岸堤足夠長)為一邊,用總長為80m的圍網(wǎng)在水庫中圍成了如圖所示的①②③三塊矩形區(qū)域,而且這三塊矩形區(qū)域的面積相等.設(shè)BC的長度為xm,矩形區(qū)域ABCD的面積為ym2

1)求yx之間的函數(shù)關(guān)系式,并注明自變量x的取值范圍;

2x為何值時,y有最大值?最大值是多少?

查看答案和解析>>

同步練習(xí)冊答案