【題目】如圖,在△ABC(ABBC),AC=2BCBC邊上的中線AD把△ABC的周長分成6040兩部分,則AC=______AB=________

【答案】48 28

【解析】

根據(jù)AD是BC邊上的中線,可以得到BD=CD,設(shè)BD=CD=x,AB=y,則AC=4x;當(dāng)△ACD的周長為60時(shí),代入x、y的值,由周長公式即可求出AC與AB的值;當(dāng)△ABD的周長為60時(shí),同理可求出AC與AB的值,注意檢驗(yàn)所得到的的答案是否滿足三角形的三邊關(guān)系.

因?yàn)锳D是BC的中線,所以BD=CD,

設(shè)BD=CD=x,AB=y,則AC=2BC=4x,

存在兩種情況:

①AC+CD=60,AB+BD=40,

則4x+x=60,x+y=40,解得x=12,y=28,

即AC=4x=48,AB=28;

②AC+CD=40,AB+BD=60,

則4x+x=40,x+y=60,解得x=8,y=52,

即AC=4x=32,AB=52,BC=2x=16,

此時(shí)不符合三角形三邊關(guān)系定理;

綜上,AC=48,AB=28

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題

122

3 (代入法) (4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】第十一屆中國鄭州國際園林博覽會于2017929日在鄭州航空港經(jīng)濟(jì)綜合實(shí)驗(yàn)區(qū)開幕,共有園博園、雙湖中央公園、苑陵故城遺址公園三個(gè)園區(qū),三園作為我市新的熱門旅游勝地,吸引了眾多游客的目光,鄭州市某中學(xué)一班、二班的老師計(jì)劃組織本班學(xué)生于20171118日前往參觀游覽,按照園區(qū)規(guī)定教師需購買普通票,學(xué)生購買學(xué)生票,兩個(gè)班前往參觀的教師人數(shù)、學(xué)生人數(shù)、計(jì)劃購票總花費(fèi)分別見如表:

班級

教師人數(shù)

學(xué)生人數(shù)

總的購票費(fèi)用

一班

4

40

1840

二班

5

45

2100

每張普通票、學(xué)生票的票價(jià)分別為多少元?

為了節(jié)約費(fèi)用,85名學(xué)生準(zhǔn)備通過旅行社購買團(tuán)體票,每張30元,9名教師準(zhǔn)備參加20171116日由鄭州市總工會推出了“10元暢游園博園的活動,本次活動將為鄭州市工會會員送上2000張園博園的門票,并于111616:00、20:00兩個(gè)整點(diǎn)在微信平臺進(jìn)行電子搶票每人1,搶到電子票的工會會員就可以花費(fèi)10元購買園博園門票,已知這兩個(gè)班的9名教師都具有搶票資格若最終這9名教師、85名學(xué)生購買門票的總花費(fèi)不能超過2900元,則至少需要幾名教師搶到“10元票”?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司共有三個(gè)部門,根據(jù)每個(gè)部門的員工人數(shù)和相應(yīng)每人所創(chuàng)的年利潤繪制成如下的統(tǒng)計(jì)表和扇形圖.

各部門人數(shù)及每人所創(chuàng)年利潤統(tǒng)計(jì)表

部門

員工人數(shù)

每人所創(chuàng)的年利潤/萬元

A

5

10

B

8

C

5

(1)在扇形圖中,C部門所對應(yīng)的圓心角的度數(shù)為___________;

在統(tǒng)計(jì)表中,___________,___________;

(2)求這個(gè)公司平均每人所創(chuàng)年利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線

求拋物線的對稱軸;

無論a為何值,拋物線都經(jīng)過兩個(gè)定點(diǎn),求這兩個(gè)定點(diǎn)的坐標(biāo);

將拋物線沿中兩個(gè)定點(diǎn)所在直線翻折,得到拋物線,當(dāng)的頂點(diǎn)到x軸的距離為1時(shí),求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在長方形ABCD中,AB=8cmBC=12cm,EAB的中點(diǎn),動點(diǎn)P在線段BC上以4cm/s的速度由點(diǎn)BC運(yùn)動,同時(shí),動點(diǎn)Q在線段CD上由點(diǎn)C向點(diǎn)D運(yùn)動,設(shè)運(yùn)動時(shí)間為ts).

1)當(dāng)t=2時(shí),求EBP的面積;

2)若動點(diǎn)Q以與動點(diǎn)P不同的速度運(yùn)動,經(jīng)過多少秒,EBPCQP全等?此時(shí)點(diǎn)Q的速度是多少?

3)若動點(diǎn)Q以(2)中的速度從點(diǎn)C出發(fā),動點(diǎn)P以原來的速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿長方形ABCD的四邊形運(yùn)動,經(jīng)過多少秒,點(diǎn)P與點(diǎn)Q第一次在長方形ABCD的哪條邊上相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,AB=AC,,點(diǎn)D,E分別在AB,BC上,,點(diǎn)FDE的延長線與AC的延長線的交點(diǎn).

(1)求證:DE=EF

(2)判斷BDCF的數(shù)量關(guān)系,并說明理由;

(3)若,,BD的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC,C = 90°,.DBC上一點(diǎn),且到A,B兩點(diǎn)的距離相等.

(1)用直尺和圓規(guī),作出點(diǎn)D的位置(不寫作法,保留作圖痕跡);

(2)連結(jié)AD,若∠B = 35°,求∠CAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,AB,C三點(diǎn)的坐標(biāo)分別為(﹣67),(﹣30),(03).

1)畫出三角形ABC,并求三角形ABC的面積;

2)將三角形ABC平移得到三角形A′B′C′,點(diǎn)C經(jīng)過平移后的對應(yīng)點(diǎn)為C′54),畫出平移后的三角形A′B′C′,并寫出點(diǎn)A′B′的坐標(biāo):A′________),B′________

3)已知點(diǎn)P(﹣3,m)為三角形ABC內(nèi)一點(diǎn),將點(diǎn)P向右平移4個(gè)單位后,再向下平移6個(gè)單位得到點(diǎn)Qn,﹣3),則m________,n________

查看答案和解析>>

同步練習(xí)冊答案