【題目】如圖,拋物線y=ax2+bx+c經(jīng)過A(4,0)、B(1,0)、C(0,3)三點,直線y=mx+n經(jīng)過A(4,0)、C(0,3)兩點.

(1)寫出方程ax2+bx+c=0的解;

(2)若ax2+bx+c>mx+n,寫出x的取值范圍.

【答案】(1)、x1=4,x2=1;(2)、4<x<0

【解析】

試題分析:(1)、根據(jù)一元二次方程的解就是拋物線與x軸的交點的橫坐標(biāo)解答即可;(2)、確定出拋物線在直線上方部分的x的取值即可.

試題解析:(1)、拋物線y=ax2+bx+c經(jīng)過A(4,0)、B(1,0),方程ax2+bx+c=0的解為x1=4,x2=1;

(2)、由圖可知,ax2+bx+c>mx+n時,4<x<0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,定義點P(x,y)的變換點為P′(x+y,x﹣y).

(1)如圖1,如果O的半徑為,

①請你判斷M(2,0),N(﹣2,﹣1)兩個點的變換點與O的位置關(guān)系;

②若點P在直線y=x+2上,點P的變換點P′在O的內(nèi),求點P橫坐標(biāo)的取值范圍.

(2)如圖2,如果O的半徑為1,且P的變換點P′在直線y=﹣2x+6上,求點P與O上任意一點距離的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(3分)有13位同學(xué)參加學(xué)校組織的才藝表演比賽.已知他們所得的分數(shù)互不相同,共設(shè)7個獲獎名額.某同學(xué)知道自己的比賽分數(shù)后,要判斷自己能否獲獎,在下列13名同學(xué)成績的統(tǒng)計量中只需知道一個量,它是( 。

A. 眾數(shù) B. 方差 C. 中位數(shù) D. 平均數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按規(guī)律在橫線上填上適當(dāng)?shù)臄?shù),﹣23,﹣18,﹣13,_____,_____,_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線y=x2+(b1)x5.

(1)寫出拋物線的開口方向和它與y軸交點的坐標(biāo);

(2)若拋物線的對稱軸為直線x=1,求b的值,并畫出拋物線的草圖(不必列表);

(3)如圖,若b>3,過拋物線上一點P(1,c)作直線PAy軸,垂足為A,交拋物線于另一點B,且BP=2PA,求這條拋物線所對應(yīng)的二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果水位升高3m時,水位變化記作+3m,那么水位下降5m時,水位變化記作:m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四個數(shù)中,正整數(shù)是( )
A.﹣2
B.﹣1
C.0
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在排成每行七天的月歷表中取下一個3×3方塊(如圖所示).若所有日期數(shù)之和為108,且n所在的是星期四,則2n+5是星期幾?(

A.星期四
B.星期六
C.星期日
D.星期一

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a※b是新規(guī)定的這樣一種運算法則:a※b=a2+2ab,例如3※(﹣2)=32+2×3×(﹣2)=﹣3
(1)試求(﹣2)※3的值
(2)若1※x=3,求x的值
(3)若(﹣2)※x=﹣2+x,求x的值.

查看答案和解析>>

同步練習(xí)冊答案