【題目】如圖,已知△ABC為等邊三角形(三條邊相等三個(gè)角為60°的三角形),點(diǎn)D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點(diǎn)F.
(1)求證:△ABE≌△CAD;
(2)求∠BFD的度數(shù).
【答案】(1)見(jiàn)解析;(2)60°.
【解析】試題分析:(1)根據(jù)等邊三角形的性質(zhì)根據(jù)SAS即可證明△ABE≌△CAD;
(2)由三角形全等可以得出∠ABE=∠CAD,由外角與內(nèi)角的關(guān)系就可以得出結(jié)論.
試題解析:(1)∵△ABC為等邊三角形,
∴AB=BC=AC,∠ABC=∠ACB=∠BAC=60°.
在△ABE和△CAD中,
AB=CA, ∠BAC=∠C,AE =CD,
∴△ABE≌△CAD(SAS),
(2)∵△ABE≌△CAD,
∴∠ABE=∠CAD,
∵∠BAD+∠CAD=60°,
∴∠BAD+∠EBA=60°,
∵∠BFD=∠ABE+∠BAD,
∴∠BFD=60°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C在線段AB上,AC=8cm,CB=6cm,點(diǎn)M、N分別是AC、BC的中點(diǎn).
(1)求線段MN的長(zhǎng);
(2)若C為線段AB上任一點(diǎn),滿足AC+CB=a cm,其它條件不變,你能猜想MN的長(zhǎng)度嗎?并說(shuō)明理由;
(3)若C在線段AB的延長(zhǎng)線上,且滿足AC﹣BC=b cm,M、N分別為AC、BC的中點(diǎn),你能猜想MN的長(zhǎng)度嗎?并說(shuō)明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直線上順次取 A,B,C 三點(diǎn),分別以 AB,BC 為邊長(zhǎng)在直線的同側(cè)作正三角形, 作得兩個(gè)正三角形的另一頂點(diǎn)分別為 D,E.
(1)如圖①,連結(jié) CD,AE,求證:CD=AE;
(2)如圖②,若 AB=1,BC=2,求 DE 的長(zhǎng);
(3)如圖③,將圖②中的正三角形 BCE 繞 B 點(diǎn)作適當(dāng)?shù)男D(zhuǎn),連結(jié) AE,若有 DE2+BE2= AE2,試求∠DEB 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種商品A的零售價(jià)為每件900元,為了適應(yīng)市場(chǎng)競(jìng)爭(zhēng),商店按零售價(jià)的九折優(yōu)惠后,再讓利40元銷售,仍可獲利10%.
(1)這種商品A的進(jìn)價(jià)為多少元?
(2)現(xiàn)有另一種商品B進(jìn)價(jià)為600元,每件商品B也可獲利10%.對(duì)商品A和B共進(jìn)貨100件,要使這100件商品共獲純利6670元,則需對(duì)商品A、B分別進(jìn)貨多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知將一塊直角三角板DEF放置在△ABC上,使得該三角板的兩條直角邊DE,DF恰好分別經(jīng)過(guò)點(diǎn)B、C.
(1)∠DBC+∠DCB= 度;
(2)過(guò)點(diǎn)A作直線直線MN∥DE,若∠ACD=20°,試求∠CAM的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線段AB的端點(diǎn)坐標(biāo)為A(2,-1),B(3,1).試畫出AB向左平移4個(gè)單位長(zhǎng)度的圖形,寫出A、B對(duì)應(yīng)點(diǎn)C、D的坐標(biāo),并判斷A、B、C、D四點(diǎn)組成的四邊形的形狀.(不必說(shuō)明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,直線AB∥CD
(1)如圖1,點(diǎn)E在直線BD的左側(cè),猜想∠ABE、∠CDE、∠BED的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖2,點(diǎn)E在直線BD的左側(cè),BF、DF分別平分∠ABE、∠CDE,猜想∠BFD和∠BED的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,點(diǎn)E在直線BD的右側(cè),BF、DF分別平分∠ABE、∠CDE;那么第(2)題中∠BFD和∠BED的數(shù)量關(guān)系的猜想是否仍成立?如果成立,請(qǐng)證明;如果不成立,請(qǐng)寫出你的猜想,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在體育課上,對(duì)七年級(jí)男生進(jìn)行引體向上測(cè)試.以做4個(gè)為標(biāo)準(zhǔn),超過(guò)的個(gè)數(shù)記作正數(shù),不足的個(gè)數(shù)記作負(fù)數(shù)其中8名男生做引體向上的個(gè)數(shù)記錄如下:
+3 | -1 | 1 | +3 | 1 | 0 | +2 | -1 |
這8名男生平均每人做了多少個(gè)引體向上?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com