【題目】已知將一塊直角三角板DEF放置在△ABC上,使得該三角板的兩條直角邊DE,DF恰好分別經(jīng)過點(diǎn)B、C.
(1)∠DBC+∠DCB= 度;
(2)過點(diǎn)A作直線直線MN∥DE,若∠ACD=20°,試求∠CAM的大小.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, ,要使,還需添加一個(gè)條件,那么在①;②;③;④這四個(gè)關(guān)系中可以選擇的是
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù) y=kx+4(k≠0).
(1)當(dāng) x=-1 時(shí),y=2,求此函數(shù)的表達(dá)式;
(2)函數(shù)圖象與 x 軸、y 軸的交點(diǎn)分別為 A、B, 求出△AOB 的面積;
(3)利用圖象求出當(dāng) y≤3 時(shí),x 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解
∵<<,即2<<3.
∴的整數(shù)部分為2,小數(shù)部分為﹣2,
∴1<﹣1<2
∴﹣1的整數(shù)部分為1.
∴﹣1的小數(shù)部分為﹣2
解決問題:已知:a是﹣3的整數(shù)部分,b是﹣3的小數(shù)部分,
求:(1)a,b的值;
(2)(﹣a)3+(b+4)2的平方根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】多項(xiàng)式1+2xy﹣3xy2的次數(shù)及項(xiàng)數(shù)分別是( 。
A.5,3B.2,3C.5,2D.3,3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC為等邊三角形(三條邊相等三個(gè)角為60°的三角形),點(diǎn)D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點(diǎn)F.
(1)求證:△ABE≌△CAD;
(2)求∠BFD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,則下列結(jié)論:
①DA平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB; ④BE+AC=AB,其中正確的是( 。
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AC=BC=10 cm,AB=12 cm,點(diǎn)D是AB的中點(diǎn),連結(jié)CD,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿A→C→B的路徑運(yùn)動(dòng),到達(dá)點(diǎn)B時(shí)運(yùn)動(dòng)停止,速度為每秒2 cm,設(shè)運(yùn)動(dòng)時(shí)間為秒.
(1)求CD的長(zhǎng);
(2)當(dāng)為何值時(shí),△ADP是直角三角形?
(3)直接寫出:當(dāng)為何值時(shí),△ADP是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于G,下列結(jié)論:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤ ,其中正確結(jié)論有( )個(gè)
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com