【題目】如圖,O的直徑AB為10cm,弦BC為5cm,D、E分別是ACB的平分線與O,AB的交點,P為AB延長線上一點,且PC=PE.

(1)求AC、AD的長;

(2)試判斷直線PC與O的位置關系,并說明理由.

【答案】(1)、AC=8;AD=5cm;(2)、相切,證明過程見解析.

【解析】

試題分析:(1)、連接BD,根據(jù)AB為直徑,則ACB=ADB=90°,根據(jù)RtABC的勾股定理求出AC的長度,根據(jù)CD平分ACB得出RtABD是等腰直角三角形,從而得出AD的長度;(2)、連接OC,根據(jù)OA=OC得出CAO=OCA,根據(jù)PC=PE得出PCE=PEC,然后結合CD平分ACB得出ACE=ECB,從而得出PCB=ACO,根據(jù)ACB=90°得出OCP=90°,從而說明切線.

試題解析:(1)、如圖,連接BD, AB是直徑, ∴∠ACB=ADB=90°,

在RTABC中,AC===8cm,

②∵CD平分ACB, AD=BD,RtABD是直角等腰三角形, AD=AB=×10=5cm;

(2)、直線PC與O相切,

理由:連接OC, OC=OA,∴∠CAO=OCA, PC=PE, ∴∠PCE=PEC,

∵∠PEC=CAE+ACE, CD平分ACB, ∴∠ACE=ECB,∴∠PCB=ACO,∵∠ACB=90°

∴∠OCP=OCB+PCB=ACO+OCB=ACB=90°, OCPC,

直線PC與O相切.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】將一直角三角板與兩邊平行的紙條如圖所示放置,下列結論:①∠1=∠2;②∠3=∠4;③∠2+∠4=90°;④∠4+∠5=180°,其中正確的個數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O的半徑為3,圓心O到直線l的距離為2,則直線l與⊙O的位置關系是(

A. 無法確定 B. 相切 C. 相交 D. 相離

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關于x的一元一次方程x-m+2=0的解是負數(shù),則m的取值范圍是( )
A.m≥2
B.m>2
C.m<2
D.m≤2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一組數(shù)據(jù):6、3、4、x、7,它們的平均數(shù)是5,則這組數(shù)據(jù)的中位數(shù)是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10分如圖,ABCD中,點E,F(xiàn)在直線AC上點E在F左側,BEDF.

1求證:四邊形BEDF是平行四邊形;

2若ABAC,AB=4,BC=,當四邊形BEDF為矩形時,求線段AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】市某樓盤準備以每平方米6 000元的均價對外銷售,由于國務院有關房地產(chǎn)的新政策出臺后,購房者持幣觀望,房地產(chǎn)開發(fā)商為了加快資金周轉,對價格經(jīng)過兩次下調后,決定以每平方米4 860元的均價開盤銷售.

(1)、求平均每次下調的百分率.

(2)、某人準備以開盤價均價購買一套100平方米的住房,開發(fā)商給予以下兩種優(yōu)惠方案以供選擇:打9.8折銷售;不打折,一次性送裝修費每平方米80元,試問哪種方案更優(yōu)惠?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某品牌電風扇銷售量的情況,對某商場5月份該品牌甲、乙、丙三種型號的電風扇銷售量進行統(tǒng)計,繪制如下兩個統(tǒng)計圖(均不完整).請你結合圖中的信息,解答下列問題:
(1)該商場5月份售出這種品牌的電風扇共多少臺?
(2)若該商場計劃訂購這三種型號的電風扇共2000臺,根據(jù)5月份銷售量的情況,求該商場應訂購丙種型號電風扇多少臺比較合理?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=x2+4x+3的對稱軸是直線______

查看答案和解析>>

同步練習冊答案