【題目】如圖,是一圓錐的左視圖,根據(jù)圖中所標(biāo)數(shù)據(jù),圓錐側(cè)面展開(kāi)圖的扇形圓心角的大小為( )
A.90°
B.120°
C.135°
D.150°
【答案】B
【解析】解:∵圓錐的底面半徑為3,
∴圓錐的底面周長(zhǎng)為6π,
∵圓錐的高是6 ,
∴圓錐的母線(xiàn)長(zhǎng)為 =9,
設(shè)扇形的圓心角為n°,
∴ =6π,
解得n=120.
答:圓錐的側(cè)面展開(kāi)圖中扇形的圓心角為120°.
所以答案是:B.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解勾股定理的概念(直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2),還要掌握弧長(zhǎng)計(jì)算公式(若設(shè)⊙O半徑為R,n°的圓心角所對(duì)的弧長(zhǎng)為l,則l=nπr/180;注意:在應(yīng)用弧長(zhǎng)公式進(jìn)行計(jì)算時(shí),要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,平面直角坐標(biāo)系中,直線(xiàn)與直線(xiàn)交與點(diǎn).
軸上是否存在點(diǎn)P,使的面積是面積的二倍?若存在,直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
如圖2,若點(diǎn)E是x軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)E的橫坐標(biāo)為,過(guò)點(diǎn)E作直線(xiàn)軸于點(diǎn)E,交直線(xiàn)于點(diǎn)F,交直線(xiàn)于點(diǎn)G,求m為何值時(shí),≌?請(qǐng)說(shuō)明理由.
在的前提條件下,直線(xiàn)l上是否存在點(diǎn)Q,使的值最小?若存在,直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖 1 所示,△ ABC 和△ AEF 為等邊三角形,點(diǎn) E 在△ ABC 內(nèi)部,且 E 到點(diǎn) A、B、C 的距離分別為 3、4、5,求∠AEB 的度數(shù).
(2)如圖 2,在△ ABC 中,∠CAB=90°,AB=AC,M、N 為 BC 上的兩點(diǎn),且∠MAN=45°,MN2 與 NC2+BM2 有何關(guān)系?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y= x2+bx+c經(jīng)過(guò)A(﹣1,0),C(2,﹣3)兩點(diǎn),與y軸交于點(diǎn)D,與x軸交于另一點(diǎn)B.
(1)求此拋物線(xiàn)的解析式及頂點(diǎn)坐標(biāo);
(2)若將此拋物線(xiàn)平移,使其頂點(diǎn)為點(diǎn)D,需如何平移?寫(xiě)出平移后拋物線(xiàn)的解析式;
(3)過(guò)點(diǎn)P(m,0)作x軸的垂線(xiàn)(1≤m≤2),分別交平移前后的拋物線(xiàn)于點(diǎn)E,F(xiàn),交直線(xiàn)OC于點(diǎn)G,求證:PF=EG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】作圖題:如圖所示是每一個(gè)小方格都是邊長(zhǎng)為1的正方形網(wǎng)格,
(1)利用網(wǎng)格線(xiàn)作圖:
①在上找一點(diǎn)P,使點(diǎn)P到和的距離相等;
②在射線(xiàn)上找一點(diǎn)Q,使.
(2)在(1)中連接與,試說(shuō)明是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AD=4,∠CAB=30°,點(diǎn)P是線(xiàn)段AC上的動(dòng)點(diǎn),點(diǎn)Q是線(xiàn)段CD上的動(dòng)點(diǎn),則AQ+QP的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了科學(xué)建設(shè)“學(xué)生健康成長(zhǎng)工程”,隨機(jī)抽取了部分學(xué)生家庭對(duì)其家長(zhǎng)進(jìn)行了主題“周末孩子在家您關(guān)心了嗎?”的調(diào)查問(wèn)卷,將收回的調(diào)查問(wèn)卷進(jìn)行了分析整理,得到了如下的樣本統(tǒng)計(jì)圖表和扇形統(tǒng)計(jì)圖:
代號(hào) | 情況分類(lèi) | 家庭數(shù) |
A | 帶孩子玩且關(guān)心其作業(yè)完成情況 | 8 |
B | 只關(guān)心其作業(yè)完成情況 | m |
C | 只帶孩子玩 | 4 |
D | 既不帶孩子玩也不關(guān)心其作業(yè)完成情況 | n |
(1)求m,n的值;
(2)該校學(xué)生家庭總數(shù)為500,學(xué)校決定按比例在B、C、D類(lèi)家庭中抽取家長(zhǎng)組成培訓(xùn)班,其比例為B類(lèi)20%,C、D類(lèi)各取60%,請(qǐng)你估計(jì)該培訓(xùn)班的家庭數(shù);
(3)若在C類(lèi)家庭中只有一個(gè)是城鎮(zhèn)家庭,其余是農(nóng)村家庭,請(qǐng)用列舉法求出C類(lèi)中隨機(jī)抽出2個(gè)家庭進(jìn)行深度家訪(fǎng),其中有一個(gè)是城鎮(zhèn)家庭的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)你根據(jù)如圖所示的阿寶與仙鶴的對(duì)話(huà),解答下列問(wèn)題:
(1)仙鶴為什么說(shuō)多邊形內(nèi)角和的度數(shù)不可能是;
(2)若圖中仙鶴所提到的外角的度數(shù)為,請(qǐng)分別求仙鶴所畫(huà)的多邊形的內(nèi)角和的度數(shù)與邊數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠(chǎng)第一季度生產(chǎn)甲、乙兩種機(jī)器共450臺(tái),改進(jìn)生產(chǎn)技術(shù)后,計(jì)劃第二季度生產(chǎn)這兩種機(jī)器共520臺(tái),其中甲種機(jī)器增產(chǎn)10%,乙種機(jī)器增產(chǎn)20%,該廠(chǎng)第一季度生產(chǎn)甲、乙兩種機(jī)器各多少臺(tái)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com