【題目】1)如圖1,在⊙O中,AB是直徑,弦EFAB,在直徑AB下方的半圓上有一個定點H(點H不與點A,B重合),請僅用無刻度的直尺畫出劣弧的中點P,并在直線AB上畫出點G,使直線AB平分∠HGP.(保留作圖痕跡,不寫作法)

    

2尺規(guī)作圖:如圖2,已知線段a、c,請你用兩種不同的方法作RtABC,使其斜邊AB=c,一條直角邊BC=a.(保留作圖痕跡,不寫作法)

【答案】1)如圖所示見解析;(2)如圖所示見解析.

【解析】

1)連結(jié)AFBE,作過AFBE的交點和圓心O的直線即可得出劣弧的中點P,該直線與圓O在直線AB下方交于一點,作過該點和H點的直線與直線AB交于一點,即為所求的G點;

2)方法一根據(jù)直徑所對的圓周角為直角,先以AB為直徑作圓,再以B為圓心,a為半徑作圓可確定C點,即可得RtABC;方法二利用作垂線的方法以C點為垂足作直線,再以B為圓心,c為半徑作圓可確定A點,即可得RtABC

解:(1)如圖1所示,點P、點G即為所求;

2)方法一: 如圖2所示,RtABC即為所求;

方法二:如圖3所示,RtABC即為所求.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,拋物線yax2+bx+3a≠0)與x軸分別交于A(﹣3,0),B兩點,與y軸交于點C,拋物線的頂點E(﹣14),對稱軸交x軸于點F

1)請直接寫出這條拋物線和直線AE、直線AC的解析式;

2)連接AC、AECE,判斷△ACE的形狀,并說明理由;

3)如圖2,點D是拋物線上一動點,它的橫坐標為m,且﹣3m<﹣1,過點DDKx軸于點K,DK分別交線段AE、AC于點G、H.在點D的運動過程中,

DG、GH、HK這三條線段能否相等?若相等,請求出點D的坐標;若不相等,請說明理由;

②在①的條件下,判斷CGAE的數(shù)量關系,并直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中成反比例成正比例,函數(shù)的自變量的取值范圍是,且當時,的值均為。

請對該函數(shù)及其圖象進行如下探究:

1)解析式探究:根據(jù)給定的條件,可以確定出該函數(shù)的解析式為:

2)函數(shù)圖象探宄:①根據(jù)解析式,選取適當?shù)淖宰兞?/span>,并完成下表:

...

...

②根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標系中描點,并畫出函數(shù)圖象.

3)結(jié)合畫出的函數(shù)圖象,解決問題:

①當,,時,函數(shù)值分別為,則的大小關系為: (用表示)

②若直線與該函數(shù)圖象有兩個交點,則的取值范圍是 ,此時,的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校開展我最喜愛的一項體育活動調(diào)查,要求每名學生必選且只能選一項,現(xiàn)隨機抽查了m名學生,并將其結(jié)果繪制成不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.

結(jié)合以上信息解答下列問題:

1m   

2)請補全上面的條形統(tǒng)計圖;

3)在圖2中,乒乓球所對應扇形的圓心角=   ;

4)已知該校共有2100名學生,請你估計該校約有多少名學生最喜愛足球活動.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知⊙O的半徑是2,點A,B在⊙O上,且∠AOB90°,動點C在⊙O上運動(不與A,B重合),點D為線段BC的中點,連接AD,則線段AD的長度最大值是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】哈市某中學為了解九年級學生體能狀況,從九年級學生中隨機抽取部分學生進行體能測試,測試結(jié)果外為AB、C、D四個等級,請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:

1)本次抽樣調(diào)查共抽取了多少名學生?

2)通過計算補全條形統(tǒng)計圖;

3)若九年級共有600名學生,請你估計九年級學生中體能測試結(jié)果為D等級的學生有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+c的圖象的一部分,對稱軸是直線x1

①b24ac; ②4a+2b+c0;不等式ax2+bx+c0的解集是x3.5;若(﹣2y1),(5,y2)是拋物線上的兩點,則y1y2.上述4個判斷中,正確的是( 。

A.①②B.①②④C.①③④D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠AOB60°,半徑為2的⊙M與邊OA、OB相切,若將⊙M水平向左平移,當⊙M與邊OA相交時,設交點為EF,且EF6,則平移的距離為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形ABCD中,DE平分∠ADCBC邊于點E,PDE上的一點(PEPD),PMPD,PMAD邊于點M.

(1)若點F是邊CD上一點,滿足PFPN,且點N位于AD邊上,如圖1所示.

求證:①PN=PF;DF+DN=DP;

(2)如圖2所示,當點FCD邊的延長線上時,仍然滿足PFPN,此時點N位于DA邊的延長線上,如圖2所示;試問DF,DN,DP有怎樣的數(shù)量關系,并加以證明.

查看答案和解析>>

同步練習冊答案