【題目】如圖,已知正方形DEFG的頂點(diǎn)D、E在△ABC的邊BC上,頂點(diǎn)G、F分別在邊AB、AC上,如果BC=5,ABC的面積是10,那么這個(gè)正方形的邊長(zhǎng)是_____

【答案】

【解析】

AH⊥BCH,交GFM,如圖,先利用三角形面積公式計(jì)算出AH=4,設(shè)正方形DEFG的邊長(zhǎng)為x,則GF=x,MH=x,AM=4-x,再證明△AGF∽△ABC,則根據(jù)相似三角形的性質(zhì)得方程,然后解關(guān)于x的方程即可.

解:如圖,作AH⊥BCH,交GFM,


∵△ABC的面積是10,

BCAH=10,
∴AH=4,
設(shè)正方形DEFG的邊長(zhǎng)為x,則GF=x,MH=x,AM=4-x,
∵GF∥BC,
∴△AGF∽△ABC,

,

,解得x= 。

故答案為。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,垂足為.

(1)填空:_________°;

(2)是線段上的動(dòng)點(diǎn),連結(jié),將線段繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn),點(diǎn)的對(duì)應(yīng)點(diǎn)是點(diǎn),連接,得到.

①如圖1,若點(diǎn)在直線上, ,求的值.

②連結(jié),直線A直線是否平行,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一段圓弧與長(zhǎng)度為1的正方形網(wǎng)格的交點(diǎn)是A、B、C.

(1)請(qǐng)完成以下操作:

①以點(diǎn)O為原點(diǎn),垂直和水平方向?yàn)檩S,網(wǎng)格邊長(zhǎng)為單位長(zhǎng),建立平面直角坐標(biāo)系;

②根據(jù)圖形提供的信息,標(biāo)出該圓弧所在圓的圓心D,并連接AD、CD;

(2)請(qǐng)?jiān)?/span>(1)的基礎(chǔ)上,完成下列填空:⊙D的半徑為__________;點(diǎn)(6,–2)在⊙D__________;(填”、“內(nèi)”、“”)ADC的度數(shù)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖拋物線y=x2+bx﹣c經(jīng)過(guò)直線y=x﹣3與坐標(biāo)軸的兩個(gè)交點(diǎn)A,B,此拋物線與x軸的另一個(gè)交點(diǎn)為C,拋物線的頂點(diǎn)為D.

(1)求此拋物線的解析式;

(2)求SABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】李剛和常明兩人在數(shù)學(xué)活動(dòng)課上進(jìn)行折紙創(chuàng)編活動(dòng).李剛拿起一張準(zhǔn)備好的長(zhǎng)方形紙片對(duì)常明說(shuō):“我現(xiàn)在折疊紙片(圖①),使點(diǎn)D落在AB邊的點(diǎn)F處,得折痕AE,再折疊,使點(diǎn)C落在AE邊的點(diǎn)G處,此時(shí)折痕恰好經(jīng)過(guò)點(diǎn)B,如果AD=,那么AB長(zhǎng)是多少?常明說(shuō);簡(jiǎn)單,我會(huì). AB應(yīng)該是_____”.

常明回答完,又對(duì)李剛說(shuō):你看我的創(chuàng)編(圖②),與你一樣折疊,可是第二次折疊時(shí),折痕不經(jīng)過(guò)點(diǎn)B,而是經(jīng)過(guò)了AB邊上的M點(diǎn),如果AD=,測(cè)得EC=3BM,那么AB長(zhǎng)是多少?李剛思考了一會(huì),有點(diǎn)為難,聰明的你,你能幫忙解答嗎?AB=_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,∠1∠2,則不一定能使△ABD≌△ACD的條件是 ( )

A. ABAC B. BDCD C. ∠B∠C D. ∠BDA∠CDA

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC∽△DEC,CA=CB,且點(diǎn)EAB的延長(zhǎng)線上.

(1)求證:AE=BD;

(2)求證:△BOE∽△COD;

(3)已知CD=10,BE=5,OD=6,求OC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有公共邊,且,,,的角平分線于點(diǎn),連接.

1)求的度數(shù);

2)若,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,O是對(duì)角線ACBD的交點(diǎn),MBC邊上的動(dòng)點(diǎn)(點(diǎn)M不與B,C重合),CNDM,與AB交于點(diǎn)N,連接OM,ON,MN.下列四個(gè)結(jié)論:①△CNB≌△DMC;OM=ON;③△OMN∽△OAD;AN2+CM2=MN2,其中正確結(jié)論的個(gè)數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案