【題目】如圖,在△ABC中,AB=AC=5,,將△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),得到,當(dāng)點(diǎn)在線段CA延長(zhǎng)線上時(shí)的面積為_________.
【答案】
【解析】
過(guò)B作BD⊥AC1,過(guò)A作AF⊥BC于F,解直角三角形求出BC和BD,進(jìn)而得出CD,然后根據(jù)等腰三角形的性質(zhì)和三角形面積公式即可解答.
解:如圖,過(guò)B作BD⊥AC1,過(guò)A作AF⊥BC于F,
∴BC=BC1,
∴∠BC1C=∠C,
∵,
∴,
設(shè)AF=3x,BF=4x,則AB=5x,
∵AB=5,
∴x=1,即AF=3,BF=4,
∴BC=8,
∴sin∠C=,
∴BD=,
在Rt△ABD中,tan∠C==,
∴,
∴DC=,
∵BC=BC1 ,BD⊥AC1,
∴CC1=2DC=,
∴A1C= CC1-AC=-5=,
∴的面積為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x﹣1與拋物線y=﹣x2+6x﹣5相交于A、D兩點(diǎn).拋物線的頂點(diǎn)為C,連結(jié)AC.
(1)求A,D兩點(diǎn)的坐標(biāo);
(2)點(diǎn)P為該拋物線上一動(dòng)點(diǎn)(與點(diǎn)A、D不重合),連接PA、PD.
①當(dāng)點(diǎn)P的橫坐標(biāo)為2時(shí),求△PAD的面積;
②當(dāng)∠PDA=∠CAD時(shí),直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于,兩點(diǎn),點(diǎn)在點(diǎn)的左側(cè),拋物線與軸正半軸交于點(diǎn),分別連接、,則有,,
(1)求拋物線的函數(shù)表達(dá)式;
(2)設(shè)為拋物線的頂點(diǎn),點(diǎn)為線段上任意一點(diǎn),過(guò)點(diǎn)作軸的垂線分別交直線及拋物線于點(diǎn)、點(diǎn),當(dāng)是銳角三角形時(shí),求的取值范圍.
(3)在(2)的前提下,設(shè),求 的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題情境:
在綜合與實(shí)踐課上,老師讓同學(xué)們以“矩形紙片的剪拼”為主題開展數(shù)學(xué)活動(dòng).如圖1,將:矩形紙片ABCD沿對(duì)角線AC剪開,得到△ABC和△ACD.并且量得AB=2cm,AC=4cm.
操作發(fā)現(xiàn):
(1)將圖1中的△ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時(shí)針?lè)较蛐D(zhuǎn),使,得到如圖2所示的△,過(guò)點(diǎn)C作的平行線,與的延長(zhǎng)線交于點(diǎn)E,則四邊形的形狀是 .
(2)創(chuàng)新小組將圖1中的△ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時(shí)針?lè)较蛐D(zhuǎn),使B、A、D三點(diǎn)在同一條直線上,得到如圖3所示的△,連接,取的中點(diǎn)F,連接AF并延長(zhǎng)至點(diǎn)G,使FG=AF,連接CG、,得到四邊形,發(fā)現(xiàn)它是正方形,請(qǐng)你證明這個(gè)結(jié)論.
實(shí)踐探究:
(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進(jìn)行如下操作:將△ABC沿著BD方向平移,使點(diǎn)B與點(diǎn)A重合,此時(shí)A點(diǎn)平移至點(diǎn),與相交于點(diǎn)H,如圖4所示,連接,試求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】參照學(xué)習(xí)函數(shù)的過(guò)程與方法,探究函數(shù)y=的圖象與性質(zhì).
因?yàn)?/span>y=,即y=﹣+1,所以我們對(duì)比函數(shù)y=﹣來(lái)探究.
列表:
x | … | ﹣4 | ﹣3 | ﹣2 | ﹣1 | ﹣ | 1 | 2 | 3 | 4 | … | |
y=﹣ | … | 1 | 2 | 4 | ﹣4 | ﹣1 | 1 | ﹣ | ﹣ | … | ||
y= | … | 2 | 3 | 5 | ﹣3 | ﹣1 | 0 | … |
描點(diǎn):在平面直角坐標(biāo)系中,以自變量x的取值為橫坐標(biāo),以y=相應(yīng)的函數(shù)值為縱坐標(biāo),描出相應(yīng)的點(diǎn),如圖所示:
(1)請(qǐng)把y軸左邊各點(diǎn)和右邊各點(diǎn),分別用一條光滑曲線順次連接起來(lái);
(2)觀察圖象并分析表格,回答下列問(wèn)題:
①當(dāng)x<0時(shí),y隨x的增大而 ;(填“增大”或“減小”)
②y=的圖象是由y=﹣的圖象向 平移 個(gè)單位而得到;
③圖象關(guān)于點(diǎn) 中心對(duì)稱.(填點(diǎn)的坐標(biāo))
(3)設(shè)A(x1,y1),B(x2,y2)是函數(shù)y=的圖象上的兩點(diǎn),且x1+x2=0,試求y1+y2+3的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線∥∥,一等腰Rt△ABC的三個(gè)頂點(diǎn)A、B、C分別在直線、、上,∠ACB=90°,AC交于點(diǎn)D.若與的距離為1,與的距離為4,則的值是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著科技的進(jìn)步和網(wǎng)絡(luò)資源的豐富,在線學(xué)習(xí)已成為更多人的自主學(xué)習(xí)選擇,某校計(jì)劃為學(xué)生提供以下四類在線學(xué)習(xí)方式:在線閱讀、在線聽課、在線答題和在線討論,為了解學(xué)生需求,該校隨機(jī)對(duì)本校部分學(xué)生進(jìn)行了“你對(duì)哪類在線學(xué)習(xí)方式最感興趣”的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)圖中信息,解答下列問(wèn)題:
(1)求本次調(diào)查的學(xué)生總?cè)藬?shù),并通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求扇形統(tǒng)計(jì)圖中“在線討論”對(duì)應(yīng)的扇形圓心角的度數(shù);
(3)該校共有學(xué)生1800人,請(qǐng)你估計(jì)該校對(duì)在線閱讀最感興趣的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A,B(﹣1,0)兩點(diǎn),與y軸交于點(diǎn)C,則下列四個(gè)結(jié)論:①ac<0;②2a+b=0;③﹣1<x<3時(shí),y<0;④4a+c<0.其中所有正確結(jié)論的序號(hào)是( 。
A.①②④B.①③④C.①②③D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的二次函數(shù)的圖象開口向下,與的部分對(duì)應(yīng)值如下表所示:
下列判斷,①;②;③方程有兩個(gè)不相等的實(shí)數(shù)根;
④若,則,正確的是________________(填寫正確答案的序號(hào)) .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com