【題目】如圖1,四邊形ABCD內(nèi)接于圓O,AC是圓O的直徑,過(guò)點(diǎn)A的切線與CD的延長(zhǎng)線相交于點(diǎn)P.且∠APC=∠BCP.

(1)求證:∠BAC2ACD.

(2)過(guò)圖1中的點(diǎn)DDEACE,交BCG(如圖2),BGGE35OE5,求⊙O的半徑.

【答案】(1)證明見(jiàn)解析;(2)O的半徑為13.

【解析】

(1)連接BD,作DF⊥BCF,由切線的性質(zhì)得出∠PAC90°,由圓周角定理得出∠ADC90°,證出∠APC∠DAC∠DBC,得出∠DBC∠BCP,證出BDCD,由等腰三角形的性質(zhì)和垂徑定理得出BFCFBCD、OF三點(diǎn)共線,∠CDF∠BDC,由圓周角定理和等腰三角形的性質(zhì)即可得出結(jié)論;

(2)設(shè)BG3x,則GE5x,證明△DEC≌△CFD(AAS),得出DECFCEDF,求出OEOF5,證明△GDF≌△GCE(ASA),得出GFGE5x,得出DECFBFBG+GF8x,DGDE+GE13x,由勾股定理得出DF12x,證明△ODE∽△GDF,得出,解得x,進(jìn)而得出答案.

證明:(1)連接BD,作DF⊥BCF,如圖1所示:

∵PA⊙O的切線,

∴PA⊥AC,

∴∠PAC90°,

∴∠APC+∠ACP90°,

∵AC是圓O的直徑,

∴∠ADC90°,

∴∠DAC+∠ACP90°,

∴∠APC∠DAC∠DBC

∵∠APC∠BCP

∴∠DBC∠BCP,

∴BDCD,

∵DF⊥BC,

∴BFCFBC,DO、F三點(diǎn)共線,

∴∠CDF∠BDC,

∵∠BDC∠BAC,

∴∠BAC2∠CDF,

∵ODOC,

∴∠CDF∠ACD

∴∠BAC2∠ACD;

解:(2)∵BGGE35

設(shè)BG3x,則GE5x,

∵DE⊥AC,

∴∠DEC90°∠CFD,

△DEC△CFD中,,

∴△DEC≌△CFD(AAS),

∴DECF,CEDF

∴OEOCDFOD,即OEOF5,

∵∠DGF+∠GDF∠DGF+∠GCE90°,

∴∠GDF∠GCE,

△GDF△GCE中,

∴△GDF≌△GCE(ASA),

∴GFGE5x,

∴DECFBFBG+GF3x+5x8x,

∴DGDE+GE13x,

∴DF12x,

∵∠ODE∠GDF,∠DEO∠DFG90°

∴△ODE∽△GDF,

,即,

解得:x,

∴DF12×18,

∴ODDFOF18513

⊙O的半徑為13.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)yax2+bx12的圖象交x軸于A(﹣3,0),B50)兩點(diǎn),與y軸交于點(diǎn)C.點(diǎn)D是拋物線上的一個(gè)動(dòng)點(diǎn).

1)求拋物線的解析式;

2)設(shè)點(diǎn)D的橫坐標(biāo)為m,并且當(dāng)mxm+5時(shí),對(duì)應(yīng)的函數(shù)值y滿(mǎn)足﹣m,求m的值;

3)若點(diǎn)D在第四象限內(nèi),過(guò)點(diǎn)DDEy軸交BCE,DFBCF.線段EF的長(zhǎng)度是否存在最大值?若存在,請(qǐng)求出這個(gè)最大值及相應(yīng)點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形的兩條邊的長(zhǎng)是方程的兩根沿直線將矩形折疊,點(diǎn)落在第一象限的點(diǎn)處,軸于點(diǎn)

1)求點(diǎn)和點(diǎn)的坐標(biāo);

2)將直線以每秒個(gè)單位長(zhǎng)度的速度沿軸向下平移,求直線掃過(guò)的三角形的面積關(guān)于運(yùn)動(dòng)的時(shí)間的函數(shù)關(guān)系式;

3)在(2)的條件下,在移動(dòng)的直線上是否存在點(diǎn),使以為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解九(1)班學(xué)生的體溫情況,對(duì)這個(gè)班所有學(xué)生測(cè)量了一次體溫(單位:℃),小明將測(cè)量結(jié)果繪制成如下統(tǒng)計(jì)表和如圖所示的扇形統(tǒng)計(jì)圖.下列說(shuō)法錯(cuò)誤的是(

體溫(℃)

36.1

36.2

36.3

36.4

36.5

36.6

人數(shù)(人)

4

8

8

10

x

2

A.這些體溫的眾數(shù)是8

B.這些體溫的中位數(shù)是36.35

C.這個(gè)班有40名學(xué)生

D.x=8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于坐標(biāo)平面內(nèi)的點(diǎn),先將該點(diǎn)向右平移1個(gè)單位,再向上平移2個(gè)單位,這種點(diǎn)的運(yùn)動(dòng)稱(chēng)為點(diǎn)的斜平移,如點(diǎn)P23)經(jīng)1次斜平移后的點(diǎn)的坐標(biāo)為(3,5).已知點(diǎn)A的坐標(biāo)為(1,0).如圖,點(diǎn)M是直線l上的一點(diǎn),點(diǎn)A關(guān)于點(diǎn)M的對(duì)稱(chēng)點(diǎn)為點(diǎn)B,點(diǎn)B關(guān)于直線l的對(duì)稱(chēng)點(diǎn)為點(diǎn)C.若點(diǎn)B由點(diǎn)A經(jīng)n次斜平移后得到,且點(diǎn)C的坐標(biāo)為(7,6),則點(diǎn)B的坐標(biāo)為_____n的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲、乙兩個(gè)不透明的布袋,甲袋中有兩個(gè)完全相同的小球,分別標(biāo)有數(shù)字1-2;乙袋中有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字-1、02.小麗先從甲袋中隨機(jī)取出一個(gè)小球,記錄下小球上的數(shù)字為x;再?gòu)囊掖须S機(jī)取出一個(gè)小球,記錄下小球上的數(shù)字為y,設(shè)點(diǎn)A的坐標(biāo)為(x,y).

1)請(qǐng)用表格或樹(shù)狀圖列出點(diǎn)A所有可能的坐標(biāo);

2)求點(diǎn)A在反比例函數(shù)y=圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某快遞公司甲、乙兩名快遞員7月上旬10天里派送快遞,乙比甲晚工作一段時(shí)間,工作期間快遞員甲因事停工3天,各自的工作效率一定,他們各自的工作量(件)隨工作時(shí)間(天)變化的圖像如圖所示.則有下列說(shuō)法:甲工人的工作效率為60/天;②乙工人每天比甲工人少送10件;甲工人一共送420件;④乙比甲少工作2天.其中正確的個(gè)數(shù)是(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】體育組為了了解九年級(jí)450名學(xué)生排球墊球的情況,隨機(jī)抽查了九年級(jí)部分學(xué)生進(jìn)行排球墊球測(cè)試(單位:個(gè)),根據(jù)測(cè)試結(jié)果,制成了下面不完整的統(tǒng)計(jì)圖表:

組別

個(gè)數(shù)段

頻數(shù)

頻率

1

5

0.1

2

21

0.42

3

4

1)表中的數(shù)   ,   ;

2)估算該九年級(jí)排球墊球測(cè)試結(jié)果小于10的人數(shù);

3)排球墊球測(cè)試結(jié)果小于10的為不達(dá)標(biāo),若不達(dá)標(biāo)的5人中有3個(gè)男生,2個(gè)女生,現(xiàn)從這5人中隨機(jī)選出2人調(diào)查,試通過(guò)畫(huà)樹(shù)狀圖或列表的方法求選出的2人為一個(gè)男生一個(gè)女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:拋物線經(jīng)過(guò)坐標(biāo)原點(diǎn).

1)求拋物線的解析式和頂點(diǎn)B的坐標(biāo);

2)設(shè)點(diǎn)A是拋物線與x軸的另一個(gè)交點(diǎn)且AC兩點(diǎn)關(guān)于y軸對(duì)稱(chēng),試在y軸上確定一點(diǎn)P,使PA+PB最短,并求出點(diǎn)P的坐標(biāo);

3)過(guò)點(diǎn)AADBPy軸于點(diǎn)D,求到直線AP、ADCP距離相等的點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案