【題目】將兩塊直角三角形紙板如圖①擺放,,現將繞點逆時針轉動;
當轉動至圖②位置時,若,且平分平分,則 _;
當轉動至圖③位置時,平分平分,求的度數;
當轉動至圖④位置時,平分平分,請直接寫出的度數.
【答案】(1)75°;②75°;75°
【解析】
(1)先求出∠BCD,再根據角平分線的性質求出∠ACM和∠BCN,根據∠MCN=∠ACB-∠ACM-∠BCN計算即可得出答案;
(2)先根據角平分線的性質得出∠ACM=∠ACE,∠BCN=∠BCD,再根據
代入求解即可得出答案;
(3)步驟同(2)一樣.
解:(1)根據題意可得∠BCD=∠ACB-∠DCE-∠ACE=10°
又CM平分∠ACE,CN平分∠BCD
∴∠ACM=∠ACE=10°,∠BCN=∠BCD=5°
∴∠MCN=∠ACB-∠ACM-∠BCN=75°
(2)∵CM平分∠ACE,CN平分∠BCD
∴∠ACM=∠ACE,∠BCN=∠BCD
∴
(3)∵CM平分∠ACE,CN平分∠BCD
∴∠ACM=∠ACE,∠BCN=∠BCD
∴
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,AD=AC,AD⊥AC,E是AB的中點,F是AC延長線上一點.
(1)若ED⊥EF,求證:ED=EF;
(2)在(1)的條件下,若DC的延長線與FB交于點P,試判定四邊形ACPE是否為平行四邊形?并證明你的結論(請先補全圖形,再解答).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,D、F分別在AB、AC邊上,此時BD=CF,BD⊥CF成立.
(1)當正方形ADEF繞點A逆時針旋轉θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當正方形ADEF繞點A逆時針旋轉45°時,如圖3,延長BD交CF于點G.
①求證:BD⊥CF;
②當AB=4,AD=時,求線段BG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知E、F分別為正方形ABCD的邊AB,BC的中點,AF與DE交于點M,O為BD的中點,則下列結論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM=MF.其中正確結論的個數是( 。
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O的半徑為2,弦BC=2,點A是優(yōu)弧BC上一動點(不包括端點),△ABC的高BD、CE相交于點F,連結ED.下列四個結論:
①∠A始終為60°;
②當∠ABC=45°時,AE=EF;
③當△ABC為銳角三角形時,ED=;
④線段ED的垂直平分線必平分弦BC.
其中正確的結論是_____.(把你認為正確結論的序號都填上)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線、相交于,∠EOC=90°,是的角平分線,,求的度數.其中一種解題過程如下:請在括號中注明根據,在橫線上補全步驟.
解:∵
( )
∴
∵是的角平分線
∴ ( )
∴
∵
( )
∴ ( )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某大型商場銷售一種茶具和茶碗,茶具每套定價2000元,茶碗每只定價200元,“雙十一”期間商場決定開展促銷活動,活動期間向客戶提供兩種優(yōu)惠方案,方案一:買一套茶具送一只茶碗;方案二,茶具和茶碗按定價的九五折付款,現在某客戶要到商場購買茶具30套,茶碗只().
(1)若客戶按方案一,需要付款 元;若客戶按方案二,需要付款 元.(用含的代數式表示)
(2)若,試通過計算說明此時哪種購買方案比較合適?
(3)當,能否找到一種更為省錢的方案,如果能是寫出你的方案,并計算出此方案應付錢數;如果不能說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知O為圓錐的頂點,M為圓錐底面上一點,點P在OM上.一只蝸牛從P點出發(fā),繞圓錐側面爬行,回到P點時所爬過的最短路線的痕跡如圖所示.若沿OM將圓錐側面剪開并展開,所得側面展開圖是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com