若自然數(shù)n使得作豎式加法n+(n+1)+(n+2)均不產(chǎn)生進(jìn)位現(xiàn)象,則稱n為“可連數(shù)”,例如32是“可連數(shù)”,因?yàn)?2+33+34不產(chǎn)生進(jìn)位現(xiàn)象;23不是“可連數(shù)”,因?yàn)?3+24+25產(chǎn)生了進(jìn)位現(xiàn)象,那么小于200的“可連數(shù)”的個(gè)數(shù)為_(kāi)_______.

解析 根據(jù)“可連數(shù)”的定義及3+4+5>10可知,當(dāng)數(shù)為一位數(shù)時(shí),此數(shù)字為0,1,2共3種情況.當(dāng)數(shù)為兩位數(shù)時(shí),個(gè)位上的數(shù)字可為0,1,2.十位上的數(shù)字可為1,2,3.共有9種情況.當(dāng)數(shù)為三位數(shù)時(shí),百位上的數(shù)字只能為1,十位上的數(shù)字可為0,1,2,3,個(gè)位上的數(shù)字可為0,1,2,共有12種情況,所以小于200的“可連數(shù)”的個(gè)數(shù)為24個(gè).

答案 24

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若自然數(shù)n使得作豎式加法n+(n+1)+(n+2)均不產(chǎn)生進(jìn)位現(xiàn)象,則稱n為“可連數(shù)”,例如32是“可連數(shù)”,因?yàn)?2+33+34不產(chǎn)生進(jìn)位現(xiàn)象;23不是“可連數(shù)”,因?yàn)?3+24+25產(chǎn)生了進(jìn)位現(xiàn)象,那么小于200的“可連數(shù)”的個(gè)數(shù)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、若自然數(shù)n使得作豎式加法n+(n+1)+(n+2)時(shí)均不產(chǎn)生進(jìn)位現(xiàn)象,便稱n為“連綿數(shù)”.如因?yàn)?2+13+14不產(chǎn)生進(jìn)位現(xiàn)象,所以12是“連綿數(shù)”;但13+14+15產(chǎn)生進(jìn)位現(xiàn)象,所以13不是“連綿數(shù)”,則不超過(guò)100的“連綿數(shù)”共有(  )個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若自然數(shù)n使得作豎式加法n+(n+1)+(n+2)時(shí)均不產(chǎn)生進(jìn)位現(xiàn)象,便稱n為“連綿數(shù)”.如因?yàn)?2+13+14不產(chǎn)生進(jìn)位現(xiàn)象,所以12是“連綿數(shù)”;但13+14+15產(chǎn)生進(jìn)位現(xiàn)象,所以13不是“連綿數(shù)”,則不超過(guò)100的“連綿數(shù)”共有( 。﹤(gè).
A.9B.11C.12D.15

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:競(jìng)賽輔導(dǎo):整數(shù)的基本知識(shí)4(解析版) 題型:選擇題

若自然數(shù)n使得作豎式加法n+(n+1)+(n+2)時(shí)均不產(chǎn)生進(jìn)位現(xiàn)象,便稱n為“連綿數(shù)”.如因?yàn)?2+13+14不產(chǎn)生進(jìn)位現(xiàn)象,所以12是“連綿數(shù)”;但13+14+15產(chǎn)生進(jìn)位現(xiàn)象,所以13不是“連綿數(shù)”,則不超過(guò)100的“連綿數(shù)”共有( )個(gè).
A.9
B.11
C.12
D.15

查看答案和解析>>

同步練習(xí)冊(cè)答案