精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在ABCD中,以點A為圓心,AB的長為半徑的圓恰好與CD相切于點C,交AD于點E,交BA的延長線于點F,若弧EF的長為π,則圖中陰影部分的面積為______

【答案】8

【解析】

連結AC,如圖,設半徑為r,先根據切線的性質得∠ACD=90°,再根據平行四邊形的性質得ABCDADBC,則∠CAF=90°,∠1=B,∠2=3,利用∠B=3易得∠1=2=45°,則根據弧長公式求得r=4,然后根據扇形面積公式,利用S陰影部分=SACDS扇形CAE進行計算即可.

連結AC,如圖,設半徑為r

AB的長為半徑的圓恰好與CD相切于點C,∴ACCD,∴∠ACD=90°.

∵四邊形ABCD為平行四邊形,∴ABCD,ADBC,∴∠CAF=90°,∠1=B,∠2=3,而AB=AC,∴∠B=3,∴∠1=2=45°.

的長為π,∴π,解得:r=4

RtACD中,∵∠2=45°,∴AC=CD=4,∴S陰影部分=SACDS扇形CAE4×48

故答案為:8

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線 與雙曲線的一個交點為P(2,m),與x軸、y軸分別交于點A,B.

(1)求m的值;

(2)若PA=2AB,求k的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,某電信公司提供了A,B兩種方案的移動通訊費用y(元)與通話時間x(元)之間的關系,則下列結論中正確的有( 。

(1)若通話時間少于120分,則A方案比B方案便宜20元;

(2)若通話時間超過200分,則B方案比A方案便宜12元;

(3)若通訊費用為60元,則B方案比A方案的通話時間多;

(4)若兩種方案通訊費用相差10元,則通話時間是145分或185分.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在某海域,一般指揮船在C處收到漁船在B處發(fā)出的求救信號,經確定,遇險拋錨的漁船所在的B處位于C處的南偏西45°方向上,且BC=60海里;指揮船搜索發(fā)現(xiàn),在C處的南偏西60°方向上有一艘海監(jiān)船A,恰好位于B處的正西方向.于是命令海監(jiān)船A前往搜救,已知海監(jiān)船A的航行速度為30海里/小時,問漁船在B處需要等待多長時間才能得到海監(jiān)船A的救援?(參考數據:,,結果精確到0.1小時)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數yax2+bx+ca0)的圖象如圖所示,則下列結論:(14a+2b+c0;(2)方程ax2+bx+c0兩根都大于零;(3yx的增大而增大;(4)一次函數yx+bc的圖象一定不過第二象限.其中正確的個數是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點E,F分別在邊ABAD上,且∠ECF=45°,CF的延長線交BA的延長線于點GCE的延長線交DA的延長線于點H,連接ACEF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)線段ACAG,AH什么關系?請說明理由;

(3)設AEm,

①△AGH的面積S有變化嗎?如果變化.請求出Sm的函數關系式;如果不變化,請求出定值.

②請直接寫出使△CGH是等腰三角形的m值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,RtAOB中,ABOB,且AB=OB=3,設直線截此三角形所得陰影部分的面積為S,則St之間的函數關系的圖象為下列選項中的( 。

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知AM是⊙O直徑,弦BCAM,垂足為點N,弦CDAM于點E,連按ABBE

1)如圖1,若CDAB,垂足為點F,求證:∠BED2BAM

2)如圖2,在(1)的條件下,連接BD,若∠ABE=∠BDC,求證:AE2CN

3)如圖3,ABCD,BECD47AE11,求EM的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線yx2+bx+cx軸交于點AB3,0),與y軸交于點C0,3).

1)求拋物線的解析式;

2)若點M是拋物線上在x軸下方的動點,過MMNy軸交直線BC于點N,求線段MN的最大值;

3E是拋物線對稱軸上一點,F是拋物線上一點,是否存在以AB,E,F為頂點的四邊形是平行四邊形?若存在,請直接寫出點F的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案