【題目】如圖,在矩形ABCD中,AB=3,BC=2,點E為AD中點,點F為BC邊上任一點,過點F分別作EB,EC的垂線,垂足分別為點G,H,則FG+FH為(
A.
B.
C.
D.

【答案】D
【解析】解:連接EF,如圖所示:
∵四邊形ABCD是矩形,
∴AB=CD=3,AD=BC=2,∠A=∠D=90°,
∵點E為AD中點,
∴AE=DE=1,
∴BE= = =
在△ABE和△DCE中,
∴△ABE≌△DCE(SAS),
∴BE=CE=
∵△BCE的面積=△BEF的面積+△CEF的面積,
BC×AB= BE×FG+ CE×FH,
即BE(FG+FH)=BC×AB,
(FG+FH)=2×3,
解得:FG+FH=
故選:D.
【考點精析】解答此題的關(guān)鍵在于理解矩形的性質(zhì)的相關(guān)知識,掌握矩形的四個角都是直角,矩形的對角線相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三個小球上分別標(biāo)有數(shù)字﹣2,﹣1,3,它們除數(shù)字外其余全部相同,現(xiàn)將它們放在一個不透明的袋子里,從袋子中隨機地摸出一球,將球上的數(shù)字記錄,記為m,然后放回;再隨機地摸取一球,將球上的數(shù)字記錄,記為n,這樣確定了點(m,n).
(1)請列表或畫出樹狀圖,并根據(jù)列表或樹狀圖寫出點(m,n)所有可能的結(jié)果;
(2)求點(m,n)在函數(shù)y=﹣ 的圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,游客在點A處做纜車出發(fā),沿A﹣B﹣D的路線可至山頂D處,假設(shè)AB和BD都是直線段,且AB=BD=600m,α=75°,β=45°,求DE的長. (參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26, ≈1.41)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y= x2+bx﹣ 的圖象與x軸交于點A(﹣3,0)和點B,以AB為邊在x軸上方作正方形ABCD,點P是x軸上一動點,連接DP,過點P作DP的垂線與y軸交于點E.

(1)請直接寫出點D的坐標(biāo):;
(2)當(dāng)點P在線段AO(點P不與A、O重合)上運動至何處時,線段OE的長有最大值,求出這個最大值;
(3)是否存在這樣的點P,使△PED是等腰三角形?若存在,請求出點P的坐標(biāo)及此時△PED與正方形ABCD重疊部分的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明用下面的方法求出方程2 ﹣3=0的解,請你仿照他的方法求出下面另外兩個方程的解,并把你的解答過程填寫在下面的表格中.

方程

換元法得新方程

解新方程

檢驗

求原方程的解

2 ﹣3=0

=t,則2t﹣3=0

t=

t= >0

= ,所以x=

x﹣2 +1=0

x+2+ =0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l:y=﹣x,雙曲線y= ,在l上取一點A(a,﹣a)(a>0),過A作x軸的垂線交雙曲線于點B,過B作y軸的垂線交l于點C,過C作x軸的垂線交雙曲線于點D,過D作y軸的垂線交l于點E,此時E與A重合,并得到一個正方形ABCD,若原點O在正方形ABCD的對角線上且分這條對角線為1:2的兩條線段,則a的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCB1中,AB=1,AB與直線l的夾角為30°,延長CB1交直線l于點A1 , 作正方形A1B1C1B2 , 延長C1B2交直線l于點A2 , 作正方形A2B2C2B3 , 延長C2B3交直線l于點A3 , 作正方形A3B3C3B4 , …,依此規(guī)律,則A2016A2017=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點A(0,1)、點B(0,1+t)、C(0,1﹣t)(t>0),點P在以D(3,3)為圓心,1為半徑的圓上運動,且始終滿足∠BPC=90°,則t的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,下列幾何體中主視圖、左視圖、府視圖都相同的是( )

A.半球
B.圓柱
C.球
D.六棱柱

查看答案和解析>>

同步練習(xí)冊答案