【題目】如圖,在正方形中,是邊上的動點(與點、不重合),且,于點,與的延長線交于點,連接、.
(1)求證:①;②;
(2)若,在點運動過程中,探究:
①線段的長度是否改變?若不變,求出這個定值;若改變,請說明理由;
②當為何值時,為等腰直角三角形.
【答案】(1)①見解析;②見解析;(2)①在點運動過程中,的長度不變,且CG=2;②AE=.
【解析】
(1)①由題意易得△DEF是等腰直角三角形,即得DE=DF,然后根據(jù)正方形的性質和SAS即可證得結論;
②根據(jù)全等三角形的性質可得,根據(jù)余角的性質可得,從而可得,于是可得結論;
(2)①由、可得,然后根據(jù)直角三角形斜邊中線的性質即得結論;
②解法一:如圖1,延長交于點,易證是等腰直角三角形,即,設,則,由為等腰直角三角形可得,進而可得,由即可求出x的值,即為AE的值;
解法二:如圖2,過點作交的延長線于點,根據(jù)AAS易證,所以,,從而可得是等腰直角三角形,由CG=2可得MC的長,進而可得MB的長,即為AE的長;
解法三:如圖3,過點作于點,由B、C、F、G四點共圓可得∠BCG=∠BFG=45°,從而可得是等腰直角三角形,可得,進而可得NH的長,由即可求出FC,即為AE的長.
(1)證明:①∵四邊形是正方形,
∴,.
∵,
∴△為等腰直角三角形,
∴,
∴,
∴,
∴;
②∵,
∴.
∵,
∴.
∵,
∴,
∴,
∴;
(2)①在點運動過程中,的長度不變.
∵,,
∴.
∵,
∴(定值);
②解法一:如圖1,延長交于點.
∵,,
∴.
∵,
∴是等腰直角三角形,即.
設,則.
∵為等腰直角三角形,,
∴.
∵,
∴,
∴.
在等腰中,∵,∴.
解得:,即.
②解法二:如圖2,過點作交的延長線于點,則∠MGB=∠CGF,
∵∠M+∠MCG=90°,∠GCF+∠MCG=90°,
∴∠M=∠GCF,
又∵GB=GF,
∴,
∴,,
∴是等腰直角三角形,
∴,
∴,
∴.
②解法三:如圖3,過點作于點,
∵∠BGF+∠BCF=180°,
∴B、C、F、G四點共圓,
∴∠BCG=∠BFG=45°,
∴是等腰直角三角形,
∴,
∴.
∵,即,
∴,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在和中,,,,且,,在一條直線上,,連接,交于點,連接.下列結論:①;②;③;④平分.其中正確的是( )
A.①②③B.①②④C.②③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,,,,點E為AB的中點,D為BC邊上的一動點,把△ACD沿AD折疊,點C落在點F處,當△AEF為直角三角形時,CD的長為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于點D,DE⊥AB,垂足為E。若DE=1,則BC的長為( )
A.2+B.C.D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題提出):有同樣大小正方形256個,拼成如圖1所示的的一個大的正方形.請問如果用一條直線穿過這個大正方形的話,最多可以穿過多少個小正方形?
(問題探究):我們先考慮以下簡單的情況:一條直線穿越一個正方形的情況.(如圖2)
從圖中我們可以看出,當一條直線穿過一個小正方形時,這條直線最多與正方形上、下、左、右四條邊中的兩個邊相交,所以當一條直線穿過一個小正方形時,這條直線會與其中某兩條邊產生兩個交點,并且以兩個交點為頂點的線段會全部落在小正方形內.
這就啟發(fā)我們:為了求出直線最多穿過多少個小正方形,我們可以轉而去考慮當直線穿越由小正方形拼成的大正方形時最多會產生多少個交點.然后由交點數(shù)去確定有多少根小線段,進而通過線段的根數(shù)確定下正方形的個數(shù).
再讓我們來考慮正方形的情況(如圖3):
為了讓直線穿越更多的小正方形,我們不妨假設直線右上方至左下方穿過一個的正方形,我們從兩個方向來分析直線穿過正方形的情況:從上下來看,這條直線由下至上最多可穿過上下平行的兩條線段;從左右來看,這條直線最多可穿過左右平行的四條線段;這樣直線最多可穿過的大正方形中的六條線段,從而直線上會產生6個交點,這6個交點之間的5條線段,每條會落在一個不同的正方形內,因此直線最多能經(jīng)過5個小正方形.
(問題解決):
(1)有同樣大小的小正方形16個,拼成如圖4所示的的一個大的正方形.如果用一條直線穿過這個大正方形的話,最多可以穿過_________個小正方形.
(2)有同樣大小的小正方形256個,拼成的一個大的正方形.如果用一條直線穿過這個大正方形的話,最多可以穿過___________個小正方形.
(3)如果用一條直線穿過的大正方形的話,最多可以穿過___________個小正方形.
(問題拓展):
(4)如果用一條直線穿過的大長方形的話(如圖5),最多可以穿過個___________小正方形.
(5)如果用一條直線穿過的大長方形的話(如圖6),最多可以穿過___________個小正方形.
(6)如果用一條直線穿過的大長方形的話,最多可以穿過________個小正方形.
(類比探究):
由二維的平面我們可以聯(lián)想到三維的立體空間,平面中的正方形中四條邊可聯(lián)想到正方體中的正方形的六個面,類比上面問題解決的方法解決如下問題:
(7)如圖7有同樣大小的小正方體8個,拼成如圖所示的的一個大的正方體.如果用一條直線穿過這個大正方體的話,最多可以穿過___________個小正方體.
(8)如果用一條直線穿過的大正方體的話,最多可以穿過_________個小正方體.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)的圖象與二次函數(shù)的圖象交于A,B兩點(點A在點B的左側),與這個二次函數(shù)圖象的對稱軸交于點C,設二次函數(shù)圖象的頂點為D.
(1)求點C的坐標;
(2)若點D與點C關于x軸對稱,且△ACD的面積等于3,求此二次函數(shù)的解析式;
(3)若,且△ACD的面積等于10,請直接寫出滿足條件的點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】九年級某班準備選拔四名男生參加學校運動會接力比賽,進行了一次50米短跑測驗,成績如下,(單位:秒)6.9 7.0 7.1 7.2 7.0 7.4 7.3 7.5 7.0 7.4 7.3 6.8 7.0 7.1 7.3 6.9 7.1 7.2 7.4 6.9 7.0 7.2 7.0 7.2 7.6
班主任老師按0.2秒的組距分段,統(tǒng)計每個成績段出現(xiàn)的頻數(shù),填入頻數(shù)分布表,并繪制了頻數(shù)分布直方圖.
成績段(秒) | |||||
頻數(shù) | 4 | 9 | 7 | 1 | |
頻率 | 0.36 | 0.28 | 0.16 | 0.04 |
(1)求a、b值,并將頻數(shù)分布直方圖補充完整;
(2)請計算這次短跑測驗的優(yōu)秀率(7.0秒及7.0秒以下);
(3)成績前四名的A、B、C、D同學組成九年級某班4×100米接力隊,其中成績最好的A同學安排在最后一棒(第4棒),另外三位同學隨機編排在其余三個棒次,畫樹狀圖或列表說明B、C兩位同學為相鄰棒次的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx﹣3(a≠0)與x軸交于點A(﹣2,0),B(4,0)兩點,與y軸交于點C.
(1)求拋物線的解析式;
(2)點P從A點出發(fā),在線段AB上以每秒3個單位長度的速度向B點運動,同時點Q從B點出發(fā),在線段BC上以每秒1個單位長度的速度向C點運動,其中一個點到達終點時,另一個點也停止運動,當PBQ存在時,求運動多少秒時,PBQ的面積最大?最大面積是多少?
(3)在運動過程中,是否存在某一時刻t,使以P,B,Q為頂點的三角形為直角三角形?若存在,求出t值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,若內一點滿足,則點為的布洛卡點,三角形的布洛卡點由法國數(shù)學家和數(shù)學教育家克洛爾于1816年首次發(fā)現(xiàn),但他的發(fā)現(xiàn)并未被當時的人們所注意.1875年,布洛卡點被一個數(shù)學愛好者法國軍官布洛卡重新發(fā)現(xiàn),并用他的名字命名.問題:已知等腰直角三角形中,.若為的布洛卡點,,則的值為( )
A.10B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com