用長度一定的不銹鋼材料設(shè)計成外觀為矩形的框架(如圖①②③中的一種)
設(shè)豎檔AB=x米,請根據(jù)以上圖案回答下列問題:(題中的不銹鋼材料總長度均指各圖中所有黑線的長度和,所有橫檔和豎檔分別與AD、AB平行)
(1)在圖①中,如果不銹鋼材料總長度為12米,當(dāng)x為多少時,矩形框架ABCD的面積為3平方米?
(2)在圖②中,如果不誘鋼材料總長度為12米,當(dāng)x為多少時,矩形架ABCD的面積S最大?最大面積是多少?
(3)在圖③中,如果不銹鋼材料總長度為a米,共有n條豎檔,那么當(dāng)x為多少時,矩形框架ABCD的面積S最大?最大面積是多少?
解答:解:(1)AD=(12-3x)÷3=4-x, 列方程:x(4-x)=3, x2-4x+3=0, ∴x1=1,x2=3, 答:當(dāng)x=1或3米時,矩形框架ABCD的面積為3平方米; (2)AD=(12-4x)÷3=4- S=x(4- 。剑 當(dāng)x=- S最大= 答:當(dāng)x= (3)AD=(a-nx)÷3= S=x( 。剑 當(dāng)x=- S最大= 答:當(dāng)x= 分析:(1)先用含x的代數(shù)式(12-3x)÷3=4-x表示橫檔AD的長,然后根據(jù)矩形的面積公式列方程,求出x的值. (2)用含x的代數(shù)式(12-4x)÷3=4- (3)用含x的代數(shù)式(a-nx)÷3= 點評:本題考查的是二次函數(shù)的應(yīng)用,(1)根據(jù)面積公式列方程,求出x的值.(2)根據(jù)面積公式得二次函數(shù),利用二次函數(shù)的性質(zhì)求最值.(3)根據(jù)面積公式得到字母系數(shù)的二次函數(shù),然后求出函數(shù)的最大值. |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
4 |
3 |
4 |
3 |
4 |
3 |
4 |
3 |
a-nx |
3 |
a-nx |
3 |
a |
2n |
a |
2n |
a2 |
12n |
a2 |
12n |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
AB的長(米) | AD的長(米) | 矩形框架ABCD的面積(平方米) |
x | y |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年天津市河北區(qū)中考數(shù)學(xué)三模試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com