【題目】在關(guān)于x,y的二元一次方程組 中.
(1)若a=3.求方程組的解;
(2)若S=a(3x+y),當(dāng)a為何值時,S有最值.

【答案】
(1)解:當(dāng)a=3時,方程組為 ,

②×2得,4x﹣2y=2③,

①+③得,5x=5,

解得x=1,

把x=1代入①得,1+2y=3,

解得y=1,

所以,方程組的解是


(2)解:方程組的兩個方程相加得,3x+y=a+1,

所以,S=a(3x+y)=a(a+1)=(a+ 2 ,

所以,當(dāng)a=﹣ 時,S有最小值﹣


【解析】(1)用加減消元法求解即可;(2)把方程組的兩個方程相加得到3x+y=a+1,然后代入整理,再利用二次函數(shù)的最值問題解答.
【考點精析】利用解二元一次方程組和二次函數(shù)的最值對題目進行判斷即可得到答案,需要熟知二元一次方程組:①代入消元法;②加減消元法;如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當(dāng)x=-b/2a時,y最值=(4ac-b2)/4a.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD,AB=4,點M是邊BC的中點,點E是邊AB上的一個動點,作EGAMAM于點G,EG的延長線交線段CD于點F

(1)如圖①,當(dāng)點E與點B重合時,求證:BM=CF

(2)設(shè)BE=x,梯形AEFD的面積為y,求yx的函數(shù)解析式,并寫出定義域.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC沿射線BC方向平移3cm得到△DEF.若△ABC的周長為14cm,則四邊形ABFD的周長為( 。

A. 14cm B. 17cm C. 20cm D. 23cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,已知在△ABC和△DEF中,AB=EF,∠B=E,EC=BD

1)試說明:△ABC≌△FED;

2)若圖形經(jīng)過平移和旋轉(zhuǎn)后得到圖2,且有∠EDB=25°,∠A=66°,試求∠AMD的度數(shù);

3)將圖形繼續(xù)旋轉(zhuǎn)后得到圖3,此時DB,F三點在同一條直線上,若DB=2DF,連接EB,已知△EFB的面積為5cm2,你能求出四邊形ABED的面積嗎?若能,請求出來;若不能,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A,B,C的坐標(biāo)分別為(1,0),(0,1),(-1,0).一個電動玩具從坐標(biāo)原點O出發(fā),第一次跳躍到點P1,使得點P1與點O關(guān)于點A成中心對稱;第二次跳躍到點P2,使得點P2與點P1關(guān)于點B成中心對稱;第三次跳躍到點P3,使得點P3與點P2關(guān)于點C成中心對稱;第四次跳躍到點P4,使得點P4與點P3關(guān)于點A成中心對稱;第五次跳躍到點P5,使得點P5與點P4關(guān)于點B成中心對稱;…照此規(guī)律重復(fù)下去,則點P2105的坐標(biāo)為_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l分別與x軸、y軸交于A,B兩點,與雙曲線y= (a≠0,x>0)分別交于D、E兩點.

(1)若點D的坐標(biāo)為(4,1),點E的坐標(biāo)為(1,4):
①分別求出直線l與雙曲線的解析式;
②若將直線l向下平移m(m>0)個單位,當(dāng)m為何值時,直線l與雙曲線有且只有一個交點?
(2)假設(shè)點A的坐標(biāo)為(a,0),點B的坐標(biāo)為(0,b),點D為線段AB的n等分點,請直接寫出b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的分式方程

1)若方程的增根為x=1,求m的值

2)若方程有增根,求m的值

3)若方程無解,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個直角∠AOB,∠COD有相同的頂點O,下列結(jié)論:①∠AOC=∠BOD;

∠AOC∠BOD=90°;③若OC平分∠AOB,則OB平分∠COD;④∠AOD的平分線與∠COB的平分線是同一條射線. 其中正確的個數(shù)有( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC ,已知 AB=AC,BD 平分∠ABC,AE BC 邊的中線,AE、BD 相交于點 D,其中∠ADB=125°,∠BAC 的度數(shù)

查看答案和解析>>

同步練習(xí)冊答案