【題目】如圖,直線l的解析式為y=﹣x+4,它與x軸和y軸分別相交于A,B兩點(diǎn).平行于直線l的直線m從原點(diǎn)O出發(fā),沿x軸的正方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng).它與x軸和y軸分別相交于C,D兩點(diǎn),運(yùn)動(dòng)時(shí)間為t秒(0≤t≤4),以CD為斜邊作等腰直角三角形CDE(E,O兩點(diǎn)分別在CD兩側(cè)).若△CDE和△OAB的重合部分的面積為S,則S與t之間的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

【答案】C
【解析】解:當(dāng)0<t≤2時(shí),S= t2 ,
當(dāng)2<t≤4時(shí),S= t2 (2t﹣4)2=﹣ t2+8t﹣8,
觀察圖象可知,S與t之間的函數(shù)關(guān)系的圖象大致是C.
所以答案是C.
【考點(diǎn)精析】通過靈活運(yùn)用函數(shù)的圖象,掌握函數(shù)的圖像是由直角坐標(biāo)系中的一系列點(diǎn)組成;圖像上每一點(diǎn)坐標(biāo)(x,y)代表了函數(shù)的一對(duì)對(duì)應(yīng)值,他的橫坐標(biāo)x表示自變量的某個(gè)值,縱坐標(biāo)y表示與它對(duì)應(yīng)的函數(shù)值即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BC,CDDA運(yùn)動(dòng)至點(diǎn)A停止.設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,△ABP的面積為y,如果y關(guān)于x的函數(shù)圖象如圖2所示,則△ABC的面積是 ( )

A. 10B. 16C. 18D. 20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,O(0,0),A(7,0),B(5,2),C(0,2)一條動(dòng)直線l分別與BCOA交于 點(diǎn)E、F,且將四邊形OABC分為面積相等的兩部分,則點(diǎn)C到動(dòng)直線l的距離的最大值為____,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,假設(shè)航空母艦始終以200千米/時(shí)的速度由西向東航行,飛機(jī)以800千米/時(shí)的速度從艦上起飛,向西航行執(zhí)行任務(wù),如果飛機(jī)在空中最多能連續(xù)飛行3個(gè)小時(shí),那么它在起飛_____小時(shí)后就必須返航,才能安全停在艦上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EABCD的邊CD的中點(diǎn),延長(zhǎng)AEBC的延長(zhǎng)線于點(diǎn)F.

(1)求證:ADE≌△FCE.

(2)若∠BAF=90°,BC=5,EF=3,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形紙片ABCD中,AD=8,AB=6,E是邊BC上的點(diǎn),將紙片沿AE折疊,使點(diǎn)B落在點(diǎn)F處,連接FC,當(dāng)△EFC為直角三角形時(shí),BE的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為打造徐州故黃河風(fēng)光帶,一段長(zhǎng)為360米的河道整治任務(wù)交由甲、乙兩個(gè)工程隊(duì)接力完成,共用時(shí)20天.已知甲隊(duì)每天整治24米,乙隊(duì)每天整治16米.

(1)根據(jù)題意,小明、小麗分別列出如下的一元一次方程(尚不完整):

小明:24x+16   =360.

小麗:

請(qǐng)分別指出上述方程中x的意義,并補(bǔ)全方程:

小明:x表示:   ;

小麗:x表示:   

(2)求甲、乙兩隊(duì)分別整治河道多少米?(寫出完整的解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC為矩形ABCD的對(duì)角線,將邊AB沿AE折疊,使點(diǎn)B落在AC上的點(diǎn)M處,將邊CD沿CF折疊,使點(diǎn)D落在AC上的點(diǎn)N處。
1)求證:四邊形AECF是平行四邊形;
2)若AB=6,AC=10,求四邊形AECF的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖所示,則下列結(jié)論正確的是(
A.a<0,b<0,c>0
B.﹣ =1
C.a+b+c<0
D.關(guān)于x的方程x2+bx+c=﹣1有兩個(gè)不相等的實(shí)數(shù)根

查看答案和解析>>

同步練習(xí)冊(cè)答案