【題目】某通信公司策劃了兩種上網(wǎng)的月收費(fèi)方式:

收費(fèi)方式

月使用費(fèi)/

包時(shí)上網(wǎng)時(shí)間/

超時(shí)費(fèi)/(元/

30

25

0.05

設(shè)每月上網(wǎng)時(shí)間為,方式的收費(fèi)金額分別為(元),(元),如圖是之間函數(shù)關(guān)系的圖象.(友情提示:若累計(jì)上網(wǎng)時(shí)間不超出包時(shí)上網(wǎng)時(shí)間,則只收月使用費(fèi);若累計(jì)上網(wǎng)時(shí)間超出包時(shí)上網(wǎng)時(shí)間,則對超出部分再加收超時(shí)費(fèi))

1 ,

2)求之間的函數(shù)解析式;

3)若每月上網(wǎng)時(shí)間為31小時(shí),請直接寫出選擇哪種方式能節(jié)省上網(wǎng)費(fèi).

【答案】145,50,0.05;(2;(3)若每月上網(wǎng)的時(shí)間為31小時(shí),選擇方式B能節(jié)省上網(wǎng)費(fèi).

【解析】

(1)根據(jù)函數(shù)圖象可以得到m、n的值,然后根據(jù)15小時(shí)花費(fèi)45元可以求得p的值;
(2)根據(jù)表格中的數(shù)據(jù)可以求得x之間的函數(shù)關(guān)系式;
(3)當(dāng)時(shí),分別求出兩種方式下的費(fèi)用,然后比較大小即可解答本題.

解:(1)由函數(shù)圖象可得,
,,
故答案為:45,50;

(2)當(dāng)時(shí),,
當(dāng)時(shí),,
綜上所述:

(3)當(dāng)時(shí),
,
,
,
若每月上網(wǎng)的時(shí)間為31小時(shí),選擇方式B能節(jié)省上網(wǎng)費(fèi).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司大門出口處有一自動感應(yīng)欄桿,點(diǎn)A是欄桿轉(zhuǎn)動的支點(diǎn),當(dāng)車輛經(jīng)過時(shí),欄桿AE會自動升起,某天早上,欄桿發(fā)生故障,在某個(gè)位置突然卡住,這時(shí)測得欄桿升起的角度∠BAE=127°,已知ABBC,支架AB1.2米,大門BC打開的寬度為2米,這時(shí)一輛長寬高分別為(4600 mm、1700 mm、1400 mm)的汽車能否順利通過?(欄桿寬度,汽車反光鏡忽略不計(jì),參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年5月,某大型商業(yè)集團(tuán)隨機(jī)抽取所屬的m家商業(yè)連鎖店進(jìn)行評估,將各連鎖店按照評估成績分成了A、B、C、D四個(gè)等級,繪制了如圖尚不完整的統(tǒng)計(jì)圖表.

評估成績n(分

評定等級

頻數(shù)

90≤n≤100

A

2

80≤n<90

B

70≤n<80

C

15

n<70

D

6

根據(jù)以上信息解答下列問題:

(1求m的值;

(2在扇形統(tǒng)計(jì)圖中,求B等級所在扇形的圓心角的大小;(結(jié)果用度、分、秒表示

(3從評估成績不少于80分的連鎖店中任選2家介紹營銷經(jīng)驗(yàn),求其中至少有一家是A等級的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,﹣3),點(diǎn)P是直線BC下方拋物線上的任意一點(diǎn).

(1)求這個(gè)二次函數(shù)y=x2+bx+c的解析式.

(2)連接PO,PC,并將△POC沿y軸對折,得到四邊形POP′C,如果四邊形POP′C為菱形,求點(diǎn)P的坐標(biāo).

(3)如果點(diǎn)P在運(yùn)動過程中,能使得以P、C、B為頂點(diǎn)的三角形與△AOC相似,請求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水庫大壩的橫截面是如圖所示的四邊形BACD,期中ABCD.瞭望臺PC正前方水面上有兩艘漁船M、N,觀察員在瞭望臺頂端P處觀測漁船M的俯角,觀測漁船N在俯角,已知NM所在直線與PC所在直線垂直,垂足為點(diǎn)EPE長為30米.

1)求兩漁船M,N之間的距離(結(jié)果精確到1米);

2)已知壩高24米,壩長100米,背水坡AD的坡度.為提高大壩防洪能力,某施工隊(duì)在大壩的背水坡填筑土石方加固,加固后壩定加寬3米,背水坡FH的坡度為,施工12天后,為盡快完成加固任務(wù),施工隊(duì)增加了機(jī)械設(shè)備,工作效率提高到原來的15倍,結(jié)果比原計(jì)劃提前20天完成加固任務(wù),施工隊(duì)原計(jì)劃平均每天填筑土石方多少立方米?(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究:如圖①,在ABCD中,EBC的中點(diǎn),AEBD相交于點(diǎn)M.求證:

應(yīng)用:如圖②,在四邊形ABCD中,ABCDAB=2CD,點(diǎn)E、F分別為AB、BC的中點(diǎn),EFBD相交于點(diǎn)M,連結(jié)AC.若ME=3,則AC的長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△OAB中,OA=4,AB=5,點(diǎn)C在OA上,AC=1,⊙P的圓心P在線段BC上,且⊙P與邊AB,AO都相切.若反比例函數(shù)(k≠0)的圖象經(jīng)過圓心P,則k=________________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c(a,b,c為常數(shù),且a≠0)經(jīng)過點(diǎn)(﹣1,0)和(m,0),且1<m<2,當(dāng)x<﹣1時(shí),y隨著x的增大而減小.下列結(jié)論:

①abc>0;

②a+b>0;

③若點(diǎn)A(﹣3,y1),點(diǎn)B(3,y2)都在拋物線上,則y1<y2;

④a(m﹣1)+b=0;

⑤若c≤﹣1,則b2﹣4ac≤4a.

其中結(jié)論錯(cuò)誤的是 .(只填寫序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2-2x-3的圖象與x軸交于A、B兩點(diǎn)(AB的左側(cè)),y軸交于點(diǎn)C,頂點(diǎn)為D.

(1)求點(diǎn)A、B、C、D的坐標(biāo),并在下面直角坐標(biāo)系中畫出該二次函數(shù)的大致圖象;

(2)說出拋物線y=x2-2x-3可由拋物線y=x2如何平移得到?

(3)求四邊形OCDB的面積.

查看答案和解析>>

同步練習(xí)冊答案