【題目】如圖,在平行四邊形中,,是對角線上不同的兩點,連接,,.下列條件中,不能得出四邊形一定是平行四邊形的為(

A. B.

C. D.

【答案】B

【解析】

連接ACBD相交于O,然后利用平行四邊形的性質(zhì)和三角形全等的性質(zhì)進行判別即可

如圖,連接ACBD相交于O,在平行四邊形ABCD,OA=OC,OB=OD

要使四邊形AECF為平行四邊形,只需證明得到OE=OF即可

A、若BE=DF,OB-BE=OD-DF,OE=OF,故選項不符合題意

B、若AE=CF,則無法判斷OE=OF,故選項符合題意

C、AFCE能利用角角邊證明AOFCOE全等,從而得到OE=OF,放選項不符合題意

D、∠BAE=DCF能夠利用角角邊證明ABECDF全等,從而得到DF=BE,然后根據(jù)A選項可得OE=OF,故選項不符合

題意

故答案為:B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】十一黃金周期間,淮安動物園在7天假期中每天接待的人數(shù)變化如下表(正數(shù)表示比前一天多的人數(shù),負數(shù)表示比前一天少的人數(shù)),把930日的游客人數(shù)記為a萬人.

(1)請用含a的代數(shù)式表示102日的游客人數(shù);

(2)請判斷七天內(nèi)游客人數(shù)最多的是哪天,有多少人?

(3)930日的游客人數(shù)為2萬人,門票每人10元,問黃金周期間淮安動物園門票收入是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校八年級數(shù)學小組在課外活動中,研究了同一坐標系中兩個反比例函數(shù))在第一象限圖像的性質(zhì),經(jīng)歷了如下探究過程:

操作猜想:(1)如圖1,當時,在y軸的正半軸上取一點Ax軸的平行線交于點B,交于點C.當OA1時, ;當OA3時, ;當OAa時,猜想

數(shù)學思考:(2)在y軸的正半軸上任意取點Ax軸的平行線,交于點B、交于點C,請用含、的式子表示的值,并利用圖2加以證明.

推廣應用:(3)如圖3,若,在y軸的正半軸上分別取點ADODOA)作x軸的平行線,交于點B、E,交于點C、F,是否存在四邊形ADFB是正方形?如果存在,求OA的長和點B的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】仔細閱讀下面例題,解答問題:

例題:已知二次三項式x24xm有一個因式是(x3),求另一個因式以及m的值.

解:設另一個因式為(xn),得x24xm(x3)(xn),x24xmx2(n3)x3n.

,

解得:.

∴另一個因式為(x7)m的值為-21.

問題:仿照以上方法解答下面問題:

(1)已知二次三項式2x23xk有一個因式是(2x5),求另一個因式以及k的值

(2)已知二次三項式6x24ax2有一個因式是(2xa),a是正整數(shù),求另一個因式以及a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某運輸公司承擔了某標段的土方運輸任務,公司已派出大小兩種型號的渣土運輸車運輸土方,已知2輛大型渣土運輸車與3輛小型渣土運輸車每次共35噸,3輛大型渣土運輸車和2輛小型渣土運輸車每次共運40噸.

(1)一輛大型渣土運輸車和一輛小型渣土運輸車每次各運土方多少噸?

(2)該運輸公司決定派出大小兩種型號的渣土運輸車共20輛參與運輸土方,若每次運輸土方總量不小于150噸,問該運輸公司最多派出幾輛小型渣土運輸車?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形沿折疊,使點落在邊上的點處,點落在點處,已知,連接,則__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學組織全體學生參加獻愛心公益活動,為了了解九年級學生參加活動情況,從九年級學生著中隨機抽取部分學生進行調(diào)查,統(tǒng)計了該天他們打掃街道,去敬老院服務和到社區(qū)文藝演出的人數(shù),并繪制了如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,其中到社區(qū)文藝演出的人數(shù)占所調(diào)查的九年級學生人數(shù)的,請根據(jù)兩幅統(tǒng)計圖中的信息,回答下列問題:

1)本次調(diào)查共抽取了多少名九年級學生?

2)補全條形統(tǒng)計圖.

3)若該中學九年級共有1500名學生,請你估計該中學九年級去敬老院的學生有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成下面推理過程:

如圖,已知:DEBC,DF、BE分別平分∠ADE、∠ABC

求證:∠FDE=DEB

證明:∵DEBC(已知)

∴∠ADE= 、佟  (     ②    

DF、BE分別平分∠ADE、∠ABC,(已知)

ADF= 、邸  ( ④ )

ABE=  ⑥   (     ⑤    

ADF=ABE(等量代換)

DF     (     ⑦    

FDE=DEB(     ⑧    

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°,AB=6,AC=10,BAC和∠ACB的平分線相交于點E,過點EEFBCAC于點F,那么EF的長為(  )

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/13/1923086297137152/1923946164379648/STEM/8dc0999226e6439d82d3fa2c2424ef2e.png]

A. B. C. D.

查看答案和解析>>

同步練習冊答案