【題目】如圖,在,于點,平分.
(1)若,,求的度數(shù);
(2)若,求的度數(shù).
【答案】(1);(2)
【解析】
(1)根據(jù)角平分線的定義和互余進(jìn)行計算;
(2)根據(jù)三角形內(nèi)角和定理和角平分線定義得出∠DAE的度數(shù)等于∠B與∠C差的一半解答即可.
解:(1),,
,
平分,
.
,
,
,
;
(2)∵∠B+∠C+∠BAC=180°,
∴∠BAC=180°∠B∠C,
∵AE平分∠BAC,
∴∠BAE=∠BAC=(180°∠B∠C)=90°(∠B+∠C),
∵AD⊥BC,
∴∠ADE=90°,
而∠ADE=∠B+∠BAD,
∴∠BAD=90°∠B,
∴∠DAE=∠BAD∠BAE=90°∠B)[90°(∠B+∠C)]=(∠C∠B),
∵∠C∠B=20°,
∴∠DAE=×20°=10°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸,軸分別交于,兩點,點 是 軸上一點,沿直線 折疊 剛好落在 軸上處.
請解答下列問題:
(1),兩點的坐標(biāo)分別為_____________,____________.
(2)求的長;
(3)在軸上存在點,使三角形為等腰三角形,直接寫出的坐標(biāo)_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形.Rt△ABC的頂點均在格點上,建立平面直角坐標(biāo)系后,點A的坐標(biāo)為(﹣4,1),點B的坐標(biāo)為(﹣1,1).
(1)先將Rt△ABC向右平移5個單位,再向下平移1個單位后得到Rt△A1B1C1.試在圖中畫出圖形Rt△A1B1C1;
(2)將Rt△A1B1C1繞點A1順時針旋轉(zhuǎn)90°后得到Rt△A2B2C2,試在圖中畫出圖形Rt△A2B2C2.并計算C1C2的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在鈍角三角形中,,,動點從點出發(fā)到點止,動點從點出發(fā)到點止,點運(yùn)動的速度為,點運(yùn)動的速度為,如果兩點同時開始運(yùn)動,那么,
若AD=AE,求值.
若△ADE和△ABC相似,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在由邊長為1的單位正方形組成的網(wǎng)格中,按要求畫出坐標(biāo)系及△A1B1C1及△A2B2C2;
(1)若點A、C的坐標(biāo)分別為(﹣3,0)、(﹣2,3),請畫出平面直角坐標(biāo)系并指出點B的坐標(biāo);
(2)畫出△ABC關(guān)于y軸對稱再向上平移1個單位后的圖形△A1B1C1;
(3)以圖中的點D為位似中心,將△A1B1C1作位似變換且把邊長放大到原來的兩倍,得到△A2B2C2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,S同學(xué)把一張6×6的正方形網(wǎng)格紙向上再向右對折兩次后按圖畫實線,剪去多余部分只留下陰影部分,然后展開攤平在一個平面內(nèi)得到了一幅剪紙圖案.T同學(xué)說:“我不用剪紙,我直接在你的圖1②基礎(chǔ)上,通過‘逆向還原’的方式依次畫出相應(yīng)的與原圖形成軸對稱的圖形也能得出最后的圖案.”畫圖過程如圖2所示.
對于圖3中的另一種剪紙方式,請仿照圖2中“逆向還原”的方式,在圖4①中的正方形網(wǎng)格中畫出還原后的圖案,并判斷它與圖2中最后得到的圖案是否相同.
答:□相同;□不相同.(在相應(yīng)的方框內(nèi)打勾)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,∠BAC=120°,AC 的垂直平分線交 BC 于 F,交 AC 于 E,交 BA 的延長線于 G,若 EG=3,則 BF 的長是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b的圖象分別與x、y軸交于點B、A,與反比例函數(shù)的圖象分別交于點C、D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=2.
(1)求該反比例函數(shù)的解析式;
(2)求線段CD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com