【題目】如圖在單位長(zhǎng)度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點(diǎn)A、BC

1)請(qǐng)完成如下操作:

①以點(diǎn)O為坐標(biāo)原點(diǎn)、豎直和水平方向?yàn)檩S、網(wǎng)格邊長(zhǎng)為單位長(zhǎng),建立平面直角坐標(biāo)系; ②根據(jù)圖形提供的信息,標(biāo)出該圓弧所在圓的圓心D,并連接AD、CD

2)請(qǐng)?jiān)冢?/span>1)的基礎(chǔ)上,完成下列填空:

①寫出點(diǎn)的坐標(biāo):C 、D ;

②⊙D的半徑= (結(jié)果保留根號(hào));

③若E7,0),試判斷直線EC與⊙D的位置關(guān)系,并說明你的理由.

【答案】1)見解析;(2)①根據(jù)圖形得:C6,2),D2,0);②;③CE與⊙D相切,理由見解析

【解析】

1)根據(jù)題意建立平面直角坐標(biāo)系,然后作出弦AB的垂直平分線,以及BC的垂直平分線,兩直線的交點(diǎn)即為圓心D,連接AD,CD

2)①根據(jù)第一問畫出的圖形即可得出CD的坐標(biāo);

②在直角三角形AOD中,由OAOD的長(zhǎng),利用勾股定理求出AD的長(zhǎng),即為圓O的半徑;

③直線CE與圓O的位置關(guān)系是相切,理由為:由圓的半徑得出DC的長(zhǎng),在直角三角形CEF中,由CFFE的長(zhǎng),利用勾股定理求出CE的長(zhǎng),再由DE的長(zhǎng),利用勾股定理的逆定理得出三角形DCE為直角三角形,即EC垂直于DC,可得出直線CE為圓O的切線.

1)根據(jù)題意畫出相應(yīng)的圖形,如下圖所示:

2)①根據(jù)圖形得:C62),D2,0);

②∵OD=2,OA=4,

由勾股定理得,AD==

③直線EC與⊙D的位置關(guān)系為相切,理由為:

RtCEF中,CF=2,EF=1,

根據(jù)勾股定理得:CE==

CDE中,CD=,CE=DE=5,

CE2+CD2=2+2=5+20=25,DE2=25,

CE2+CD2=DE2

∴△CDE為直角三角形,即∠DCE=90°,

CEDC,

CE與⊙D相切.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司經(jīng)銷一種商品,每件成本為20元.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在一段時(shí)間內(nèi),銷售量w(件)隨銷售單價(jià)x(元/件)的變化而變化,具體關(guān)系式為:w=-10x+500.設(shè)這種商品在這段時(shí)間內(nèi)的銷售利潤(rùn)為y(元),解答下列問題:

1)求yx的函數(shù)關(guān)系式;

2)當(dāng)x取何值時(shí),利潤(rùn)最大?最大利潤(rùn)為多少元?

3)如果物價(jià)部門規(guī)定這種商品的銷售單價(jià)不得高于32/件,公司想要在這段時(shí)間內(nèi)獲得2000元的銷售利潤(rùn),銷售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】感知:如圖①,在四邊形ABCD中,ABCD,∠B90°,點(diǎn)PBC邊上,當(dāng)∠APD90°時(shí),可知△ABP∽△PCD.(不要求證明)

探究:如圖②,在四邊形ABCD中,點(diǎn)PBC邊上,當(dāng)∠B=∠C=∠APD時(shí),求證:△ABP∽△PCD

拓展:如圖③,在△ABC中,點(diǎn)P是邊BC的中點(diǎn),點(diǎn)D、E分別在邊ABAC上.若∠B=∠C=∠DPE45°,BC6,BD4,則DE的長(zhǎng)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,把以格點(diǎn)為頂點(diǎn)的三角形稱為格點(diǎn)三角形(每個(gè)小方格都是邊長(zhǎng)為1的正方形).圖中ABC是格點(diǎn)三角形,點(diǎn)AB,C的坐標(biāo)分別是(﹣4,﹣1),(﹣2,﹣3),(﹣1,﹣2).

1)以O為旋轉(zhuǎn)中心,把ABCO點(diǎn)順時(shí)針旋轉(zhuǎn)90°后得到A1B1C1,畫出A1B1C1

2)以O為位似中心,在第一象限內(nèi)把ABC放大2倍后得到A2B2C2,畫出A2B2C2;

3ABC內(nèi)有一點(diǎn)Pa,b),寫出經(jīng)過(2)位似變換后P的對(duì)應(yīng)點(diǎn)P1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在RtABC中,∠ACB90°,AC2BC,點(diǎn)D在邊AC上,連接BD,過ABD的垂線交BD的延長(zhǎng)線于點(diǎn)E

1)若M,N分別為線段ABEC的中點(diǎn),如圖1,求證:MNEC;

2)如圖2,過點(diǎn)CCFECBD于點(diǎn)F,求證:AE2BF;

3)如圖3,以AE為一邊作一個(gè)角等于∠BAC,這個(gè)角的另一邊與BE的延長(zhǎng)線交于P點(diǎn),OBP的中點(diǎn),連接OC,求證:OCBEPE).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中,a、b、c分別為∠A、∠B、∠C的對(duì)邊,方程是關(guān)于x的一元二次方程.

1)判斷方程的根的情況為 (填序號(hào));

①方程有兩個(gè)相等的實(shí)數(shù)根;     ②方程有兩個(gè)不相等的實(shí)數(shù)根;

③方程無實(shí)數(shù)根;            、軣o法判斷

2)如圖,若ABC內(nèi)接于半徑為2的⊙O,直徑BDAC于點(diǎn)E,且∠DAC=60°,求方程的根;

3)若是方程的一個(gè)根,ABC的三邊a、bc的長(zhǎng)均為整數(shù),試求a、b、c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校研究學(xué)生的課余愛好情況,采取抽樣調(diào)查的方法,從閱讀、運(yùn)動(dòng)、娛樂、上網(wǎng)等四個(gè)方面調(diào)查了若干名學(xué)生的興趣愛好,并將調(diào)查結(jié)果繪制成下面兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答下列問題:

(1)在這次調(diào)查中,一共調(diào)查了   名學(xué)生;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該校共有1500名學(xué)生,估計(jì)愛好運(yùn)動(dòng)的學(xué)生有   人;

(4)在全校同學(xué)中隨機(jī)選取一名學(xué)生參加演講比賽,用頻率估計(jì)概率,則選出的恰好是愛好閱讀的學(xué)生的概率是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種蔬菜的銷售單價(jià)y1與銷售月份x之間的關(guān)系如圖(1)所示,成本y2與銷售月份之間的關(guān)系如圖(2)所示(圖(1)的圖象是線段圖(2)的圖象是拋物線)

1)分別求出y1、y2的函數(shù)關(guān)系式(不寫自變量取值范圍);

2)通過計(jì)算說明:哪個(gè)月出售這種蔬菜,每千克的收益最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)銷售一種商品的進(jìn)價(jià)為每件30元,銷售過程中發(fā)現(xiàn)月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系如圖所示.

1)根據(jù)圖象直接寫出yx之間的函數(shù)關(guān)系式.

2)設(shè)這種商品月利潤(rùn)為W(元),求Wx之間的函數(shù)關(guān)系式.

3)這種商品的銷售單價(jià)定為多少元時(shí),月利潤(rùn)最大?最大月利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案