【題目】如圖,在矩形ABCD中,點(diǎn)E是對(duì)角線(xiàn)AC上一動(dòng)點(diǎn),連接BE,作CFBE分別交BE于點(diǎn)GAB于點(diǎn)F

1)如圖1,若CF恰好平分∠BCA,求證:△CGE≌△CGB

2)如圖2,若,取BC的中點(diǎn)H,連接AHBE于點(diǎn)P,求證:

AH3AP

BH2BFBA

【答案】1)見(jiàn)解析;(2)①見(jiàn)解析;②見(jiàn)解析

【解析】

1)根據(jù)ASA證明三角形全等即可.
2)①延長(zhǎng)BEADT.利用平行線(xiàn)分線(xiàn)段成比例定理解決問(wèn)題即可.
②證明△ABT∽△BCF,推出可得結(jié)論.

解:證明:(1)如圖1中,

CF平分∠ACB,

∴∠ECG=∠BCG,

CFBE

∴∠CGB=∠CGE90°,

CGCG,

∴△CGE≌△CGBASA).

2如圖2中,延長(zhǎng)BEADT

,

,

∵四邊形ABCD是矩形,

ATBC,

BHBC,

,

AH3AP

∵四邊形ABCD是矩形,

∴∠CBF=∠BAT90°,

CFBE,

∴∠ABT+TBC90°,∠TBC+BCF90°,

∴∠ABT=∠BCF,

∴△ABT∽△BCF,

,

ATBCBH,BC2BH

BFBAATBCBH2BHBH2,

BH2BFBA

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某軟件開(kāi)發(fā)公司開(kāi)發(fā)了A、B兩種軟件,每種軟件成本均為1400元,售價(jià)分別為2000元、1800元,這兩種軟件每天的銷(xiāo)售額共為112000元,總利潤(rùn)為28000元.

1)該店每天銷(xiāo)售這兩種軟件共多少個(gè)?

2)根據(jù)市場(chǎng)行情,公司擬對(duì)A種軟件降價(jià)銷(xiāo)售,同時(shí)提高B種軟件價(jià)格.此時(shí)發(fā)現(xiàn),A種軟件每降50元可多賣(mài)1件,B種軟件每提高50元就少賣(mài)1件.如果這兩種軟件每天銷(xiāo)售總件數(shù)不變,那么這兩種軟件一天的總利潤(rùn)最多是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 拋物線(xiàn)軸交于點(diǎn)A(-1,0),頂點(diǎn)坐標(biāo)(1,n)與軸的交點(diǎn)在(0,2),(0,3)之間(包 含端點(diǎn)),則下列結(jié)論:①;②;③對(duì)于任意實(shí)數(shù)m,總成立;④關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根.其中結(jié)論正確的個(gè)數(shù)為  

A. 1 個(gè) B. 2 個(gè) C. 3 個(gè) D. 4 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了做好“營(yíng)造清潔生活環(huán)境”活動(dòng)的宣傳,對(duì)本校學(xué)生進(jìn)行了有關(guān)知識(shí)的測(cè)試,測(cè)試后隨機(jī)抽取了部分學(xué)生的測(cè)試成績(jī),按“優(yōu)秀、良好、及格、不及格”四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì)分析,并將分析結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖:

1)求抽取的學(xué)生總?cè)藬?shù);

2)抽取的學(xué)生中,等級(jí)為優(yōu)秀的人數(shù)為   人;扇形統(tǒng)計(jì)圖中等級(jí)為“不合格”部分的圓心角的度數(shù)為   °;

3)補(bǔ)全條形統(tǒng)計(jì)圖;

4)若該校有學(xué)生3500人,請(qǐng)根據(jù)以上統(tǒng)計(jì)結(jié)果估計(jì)成績(jī)等級(jí)為“優(yōu)秀”和“良好”的學(xué)生共有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形的邊長(zhǎng)為,點(diǎn)為正方形的中心,點(diǎn)邊上一動(dòng)點(diǎn),直線(xiàn)于點(diǎn),過(guò)點(diǎn),垂足為點(diǎn),連接,則的最小值為(

A.2B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),ODBC于點(diǎn)D,過(guò)點(diǎn)C作⊙O的切線(xiàn),交OD的延長(zhǎng)線(xiàn)于點(diǎn)E,連接BE

1)求證:BE與⊙O相切;

2)設(shè)OE交⊙O于點(diǎn)F,若DF = 2BC = ,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)證明推斷:如圖①,在ABC中,D,E分別是邊BC,AB的中點(diǎn),AD,CE相交于點(diǎn)G,求證:

2)類(lèi)比探究:如圖②,在正方形ABCD中,對(duì)角線(xiàn)ACBD交于點(diǎn)O,E為邊BC的中點(diǎn),AEBD交于點(diǎn)F,若AB6,求OF的長(zhǎng);

3)拓展運(yùn)用:若正方形ABCD變?yōu)?/span>ABCD,如圖③,連結(jié)DEAC于點(diǎn)G,若四邊形OFEG的面積為,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A(1,1)關(guān)于直線(xiàn)y =kx的對(duì)稱(chēng)點(diǎn)恰好落在x軸的正半軸上,則k的值是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,C=90°,點(diǎn)DAB的中點(diǎn),ACBC

(1)試用無(wú)刻度的直尺和圓規(guī),在BC上作一點(diǎn)E,使得直線(xiàn)ED平分ABC的周長(zhǎng);(不要求寫(xiě)作法,但要保留作圖痕跡)

(2)(1)的條件下,若DERtABC面積為12兩部分,請(qǐng)?zhí)骄?/span>ACBC的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案