【題目】在平面直角坐標系中,O為原點,點A(1,0),點B(0, ),把△ABO繞點O順時針旋轉(zhuǎn),得A′B′O,記旋轉(zhuǎn)角為α.
(Ⅰ)如圖①,當α=30°時,求點B′的坐標;
(Ⅱ)設(shè)直線AA′與直線BB′相交于點M.
如圖②,當α=90°時,求點M的坐標;
②點C(﹣1,0),求線段CM長度的最小值.(直接寫出結(jié)果即可)
【答案】(Ⅰ)B′(, );(Ⅱ)①M(, ),②最小值=﹣1.
【解析】試題分析:(Ⅰ)記A′B′與x軸交于點H.只要求出OH,B′H即可解決問題;
(Ⅱ)①作MN⊥OA于N,只要求出ON,MN即可解決問題;
②首先證明:點M的運動軌跡為以AB為直徑的⊙O′,當C、M、O′共線時,CM的值最小,最小值=CO-AB= -1;
試題解析:
(Ⅰ)記A′B′與x軸交于點H.
∵∠HOA′=α=30°,
∴∠OHA′=90°,
∴OH=OA′cos30°=,B′H=OB′cos30°=,
∴B′(, ).
(Ⅱ)①∵OA=OA′,
∴Rt△OAA′是等腰直角三角形,
∵OB=OB′,
∴Rt△OBB′也是等腰直角三角形,
顯然△AMB′是等腰直角三角形,
作MN⊥OA于N,
∵OB′=OA+AB′=1+2AN=,
∴MN=AN=,
∴M(, ).
②如圖③中,
∵∠AOA′=∠BOB′,OA=OA′,OB=OB′,
∴∠OAA′=∠OA′A=∠OBB′=∠OB′B,
∵∠OAA′+∠OAM=180°,
∴∠OBB′+∠OAM=180°,
∴∠AOB+∠AMB=180°,
∵∠AOB=90°,
∴∠AMB=90°,
∴點M的運動軌跡為以AB為直徑的⊙O′,
當C、M、O′共線時,CM的值最小,最小值=CO′﹣AB=﹣1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=30°,邊AB的垂直平分線分別交AB和BC于點D,E,且AE平分∠BAC.
(1)求∠C的度數(shù);
(2)若CE=1,求AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩家綠化養(yǎng)護公司各自推出了校園綠化養(yǎng)護服務(wù)的收費方案.
甲公司方案:每月的養(yǎng)護費用y(元)與綠化面積x(平方米)是一次函數(shù)關(guān)系,如圖所示.
乙公司方案:綠化面積不超過1000平方米時,每月收取費用5500元;綠化面積超過1000平方米時,每月在收取5500元的基礎(chǔ)上,超過部分每平方米收取4元.
(1)求如圖所示的y與x的函數(shù)解析式;(不要求寫取值范圍)
(2)如果某學校目前的綠化面積是1200平方米.試通過計算說明:選擇哪家公司的服務(wù),每月的綠化養(yǎng)護費用較少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在多項式中,表示這個多項式的項數(shù),表示這個多項式中三次項的系數(shù).在數(shù)軸上點與點所表示的數(shù)恰好可以用與分別表示.有一個動點從點出發(fā),以每秒2個單位長度的速度沿數(shù)軸向左勻速運動,設(shè)運動時間為秒.
(1)________,___________,線段_________個單位長度;
(2)點所表示數(shù)是________(用含的多項式表示);
(3)求當為多少時,線段的長度恰好是線段長度的三倍?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:順次連接矩形各邊的中點,得到一個菱形,如圖①;再順次連接菱形各邊的中點,得到一個新的矩形.如圖②;然后順次連接新的矩形各邊的中點,得到一個新的菱形,如圖③;如此反復(fù)操作下去,則第3個圖形中直角三角形的個數(shù)有______個,第2018個圖形中直角三角形的個數(shù)有______個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點B落在點E處,CE交AD于點F,則DF的長等于( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知數(shù)軸上兩點A、B所表示的數(shù)分別為a和b,且滿足|a+3|+(b-9)2=0,O為原點;
(1) a= ,b= .
(2) 若點C從O點出發(fā)向右運動,經(jīng)過3秒后點C到A點的距離等于點C到B點距離,求點C的運動速度?(結(jié)合數(shù)軸,進行分析.)
(3) 若點D以2個單位每秒的速度從點O向右運動,同時點P從點A出發(fā)以3個單位每秒的速度向左運動,點Q從點B出發(fā),以6個單位每秒的速度向右運動.在運動過程中,M、N分別為PD、OQ的中點,問的值是否發(fā)生變化,請說明理由.(注:PD指的是點P與D之間的線段,而算式PQ-OD指線段PQ與OD長度的差.類似的,其它的兩個大寫字母寫在一起時意義一樣 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)與一次函數(shù)y=x+b的圖象在第一象限相交于點A(1,﹣k+4).
(1)試確定這兩個函數(shù)的表達式;
(2)求出這兩個函數(shù)圖象的另一個交點B的坐標,并根據(jù)圖象寫出使反比例函數(shù)的值大于一次函數(shù)的值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了備戰(zhàn)初三物理、化學實驗操作考試,某校對初三學生進行了模擬訓練,物理、化學各有4個不同的操作實驗題目,物理用番號①、②、③、④代表,化學用字母a、b、c、d表示,測試時每名學生每科只操作一個實驗,實驗的題目由學生抽簽確定,第一次抽簽確定物理實驗題目,第二次抽簽確定化學實驗題目.
(1)請用樹形圖法或列表法,表示某個同學抽簽的各種可能情況.
(2)小張同學對物理的①、②和化學的b、c號實驗準備得較好,他同時抽到兩科都準備的較好的實驗題目的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com