【題目】如圖,將兩塊直角三角尺的直角頂點(diǎn)C疊放在一起.
(1)寫出以C為頂點(diǎn)的相等的銳角,并說明理由;
(2)若射線CB平分∠DCE,求∠ACE的度數(shù).
【答案】
(1)解:∠ACD=∠BCE,
∵∠ACB=∠DCE=90°,
∴∠ACD+∠DCE=90°,
∠BCE+∠DCE=90°,
∴∠ACD=∠BCE
(2)解:∵CB平分∠DCE,
∴∠BCE= ∠DCE=45°,
∴∠ACE=∠ACB+∠BCE=135°
【解析】(1)根據(jù)同角的余角相,即可得出答案。
(2)根據(jù)角平分線的定義求出∠BCE的度數(shù),再根據(jù)∠ACE=∠ACB+∠BCE,計算即可得出∠ACE的度數(shù)。
【考點(diǎn)精析】根據(jù)題目的已知條件,利用角的平分線和角的運(yùn)算的相關(guān)知識可以得到問題的答案,需要掌握從一個角的頂點(diǎn)引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線;角之間可以進(jìn)行加減運(yùn)算;一個角可以用其他角的和或差來表示.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明家的住房平面圖呈長方形,被分割成3個正方形和2個長方形后仍是中心對稱圖形.若只知道原住房平面圖長方形的周長,則分割后不用測量就能知道周長的圖形的標(biāo)號為( )
A.①②
B.②③
C.①③
D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,AB=2AD.
(1)作AE平分∠BAD交DC于E(尺規(guī)作圖,保留作圖痕跡);
(2)在(1)的條件下,連接BE,判定△ABE的形狀(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在方格紙中,△ABC的三個頂點(diǎn)及D、E、F、G、H、五個點(diǎn)分別位于小正方形的頂點(diǎn)上.
(1)畫出△ABC繞點(diǎn)B順時針方向旋轉(zhuǎn)90°后的圖形.
(2)先從E、F、G、H四個點(diǎn)中任意取兩個不同的點(diǎn),再和D點(diǎn)構(gòu)成三角形,求所得三角形與△ABC面積相等的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,M、N分別是AD、BC的中點(diǎn),P、Q分別是BM、DN的中點(diǎn).
(1)求證:△MBA≌△NDC;
(2)求證:四邊形MPNQ是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上有三點(diǎn)A、B、C,且A、B兩點(diǎn)間的距離是4,B、C兩點(diǎn)的距離是2,若點(diǎn)A表示的數(shù)是﹣2,則點(diǎn)C表示的數(shù)是 . (寫出所有可能的結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算與化簡:
(1)(﹣ )×(﹣12)
(2)(﹣3)2÷(2 )﹣4×(﹣ )2
(3)x2y﹣3×( xy2﹣ yx2)+y2x,其中x=﹣2,y=1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1的解析表達(dá)式為y=-3x+3,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過點(diǎn)A,B,直線l1,l2,交于點(diǎn)C.
(1)求點(diǎn)D的坐標(biāo);
(2)求直線l2的解析表達(dá)式;
(3)求△ADC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com