【題目】若△ABC的三邊長a,b,c滿足(a-b)2+|b-2|+(c2-8)2=0,則下列對此三角形的形狀描述最確切的是(  )

A. 等邊三角形 B. 等腰三角形 C. 等腰直角三角形 D. 直角三角形

【答案】C

【解析】

現(xiàn)根據(jù)非負(fù)數(shù)的非負(fù)性質(zhì)求出a=b=2,c=,再根據(jù)勾股定理逆定理可得在△ABC的三邊長a,b,c滿足a2b2c2,則這個(gè)三角形是直角三角形,又由于a=b,因此可判定為等腰直角三角形.

因?yàn)?/span>a-b2+|b-2|+(c2-8)2=0,

所以a-b=0, b-2=0, c2-8=0,

所以a=b=2,c=,

因?yàn)?/span>a2=4,b2=4,c2=8,

所以a2b2c2,

所以ABC是直角三角形,

又因?yàn)?/span>a=b,

所以△ABC是等腰直角三角形,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題引入:

(1)如圖①,在△ABC中,點(diǎn)O是∠ABC和∠ACB平分線的交點(diǎn),若∠A=α,則∠BOC=(用α表示);如圖②,∠CBO= ∠ABC,∠BCO= ∠ACB,∠A=α,則∠BOC=(用α表示)拓展研究:
(2)如圖③,∠CBO= ∠DBC,∠BCO= ∠ECB,∠A=α,請猜想∠BOC=(用α表示),并說明理由.
類比研究:
(3)BO、CO分別是△ABC的外角∠DBC、∠ECB的n等分線,它們交于點(diǎn)O,∠CBO= ∠DBC,∠BCO= ∠ECB,∠A=α,請猜想∠BOC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“龜兔首次賽跑“之后,輸了比賽的兔子沒有氣餒,總結(jié)反思后,和烏龜約定再賽一場.圖中的圖象刻畫了“龜兔再次賽跑”的故事(x表示烏龜從起點(diǎn)出發(fā)所行的時(shí)間,y1表示烏龜所行的路程,y2表示兔子所行的路程).有下列說法:
①“龜兔再次賽跑”的路程為1000米
②兔子和烏龜同時(shí)從起點(diǎn)出發(fā)
③烏龜在途中休息了10分鐘
④兔子在途中750米處追上烏龜
其中說法正確的是(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1、圖2中,點(diǎn)C為線段AB上一點(diǎn),△ACM△CBN都是等邊三角形.

(1) 如圖1,線段AN與線段BM是否相等?證明你的結(jié)論;

(2) 如圖2,ANMC交于點(diǎn)E,BMCN交于點(diǎn)F,探究△CEF的形狀,并證明你的結(jié)論.

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖信息,L1為走私船,L2為我公安快艇,航行時(shí)路程與時(shí)間的函數(shù)圖象,問

(1)在剛出發(fā)時(shí)我公安快艇距走私船多少海里?

(2)計(jì)算走私船與公安快艇的速度分別是多少?

(3)寫出L1,L2的解析式

(4)問6分鐘時(shí)兩艇相距幾海里.

(5)猜想,公安快艇能否追上走私船,若能追上,那么在幾分鐘追上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC

重合,點(diǎn)B落在點(diǎn)F處,折痕為AE,且EF=3,則AB的長為( )

A. 3 B. 4

C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡下列各式:
(1)4(a+b)2﹣2(a+b)(2a﹣2b)
(2)( ﹣m+1)÷

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(1) (2)

(3) (4)

(5) (6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小李和小陸從A地出發(fā),騎自行車沿同一條路行駛到B地,他們離出發(fā)地的距離S(單位:km)和行駛時(shí)間t(單位:h)之間的函數(shù)關(guān)系的圖象如圖所示,根據(jù)圖中的信息,有下列說法:

(1)他們都行駛了20 km

(2)小陸全程共用了1.5h;

(3)小李和小陸相遇后,小李的速度小于小陸的速度

(4)小李在途中停留了0.5h。

其中正確的有

A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)

查看答案和解析>>

同步練習(xí)冊答案