【題目】如圖信息,L1為走私船,L2為我公安快艇,航行時路程與時間的函數(shù)圖象,問

(1)在剛出發(fā)時我公安快艇距走私船多少海里?

(2)計算走私船與公安快艇的速度分別是多少?

(3)寫出L1,L2的解析式

(4)問6分鐘時兩艇相距幾海里.

(5)猜想,公安快艇能否追上走私船,若能追上,那么在幾分鐘追上?

【答案】(1)在剛出發(fā)時我公安快艇距走私船5海里;(2)走私船的速度是1(海里/分),公安快艇的速度是 (海里/分);(3) y1x+5,y2x;(4) 6分鐘時兩艇相距2海里;(5) 10分鐘時公安快艇追上了走私船.

【解析】

觀察圖形(1)(2)問很好解決,(3)問中應設出解析式,根據(jù)圖上給的點確定解析式,代入x=6可求出第4問,第(5)問就是看y1y2有沒有相等情況.

(1)在剛出發(fā)時我公安快艇距走私船5海里.

(2)走私船的速度是=1(海里/),公安快艇的速度是 (海里/).

(3)L1的解析式為y1=k1x+b,將點(0,5)和點(4,9)代入得,

解得.

y1=x+5.

L2的解析式為y2=k2x,將點(4,6)代入得y2x.

(4)x=6時,y1=11,y2=9.11-9=2(海里),

6分鐘時兩艇相距2海里.

(5)能追上.令y1=y(tǒng)2,則x+5=x,解得x=10,

10分鐘時公安快艇追上了走私船.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形ABCD的邊長為1,點P為正方形內(nèi)一動點,若點M在AB上,且滿足△PBC∽△PAM,延長BP交AD于點N,連結CM.

(1)如圖一,若點M在線段AB上,求證:AP⊥BN;AM=AN;
(2)①如圖二,在點P運動過程中,滿足△PBC∽△PAM的點M在AB的延長線上時,AP⊥BN和AM=AN是否成立?(不需說明理由)
②是否存在滿足條件的點P,使得PC= ?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“五一節(jié)”期間,小明一家自駕游去了離家240千米的某地,如圖是他們離家的距離y(千米)與汽車行駛時間x(小時)之間的函數(shù)圖象.

(1)求出y(千米)與x(小時)之間的函數(shù)表達式;
(2)他們出發(fā)2小時時,離目的地還有多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明同學騎自行車去新華書店,如圖表示他離家的距離y(千米)與所用的時間s(小時)之間關系的函數(shù)圖象

(1)根據(jù)圖象回答:小明家離新華書店千米,小明用了小時到達新華書店;
(2)小明從家出發(fā)兩個半小時走了千米;
(3)直線CD的函數(shù)解析式為
(4)小明出發(fā)小時,離家12千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a是最大的負整數(shù),b5的相反數(shù),c=|2|,a、b、c分別是點A. B.C在數(shù)軸上對應的數(shù).

(1)a、bc的值,并在數(shù)軸上標出點A. B. C.

(2)若動點P從點A出發(fā)沿數(shù)軸正方向運動,動點Q同時從點B出發(fā)也沿數(shù)軸正方向運動,點P的速度是每秒3個單位長度,點Q的速度是每秒1個單位長度,求運動幾秒后,點Q可以追上點P?

(3)在數(shù)軸上找一點M,使點MA. B.C三點的距離之和等于12,請直接寫出所有點M對應的數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若△ABC的三邊長a,b,c滿足(a-b)2+|b-2|+(c2-8)2=0,則下列對此三角形的形狀描述最確切的是(  )

A. 等邊三角形 B. 等腰三角形 C. 等腰直角三角形 D. 直角三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國漢代數(shù)學家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱其為“趙爽弦圖”,它是用八個全等的直角三角形拼接而成,記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2S3.若S1+S2+S315,則S2的值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如上圖所示.已知:在正方形ABCD中,∠BAC的平分線交BC于E,作EF⊥AC于F,作FG⊥AB于G.則 =

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC是等邊三角形,點D是直線BC上一點,以AD為一邊在AD的右側作等邊ADE.

(1)如圖①,點D在線段BC上移動時,直接寫出∠BAD和∠CAE的大小關系;

(2)如圖②,點D在線段BC的延長線上移動時,猜想∠DCE的大小是否發(fā)生變化.若不變請求出其大。蝗糇兓,請說明理由.

查看答案和解析>>

同步練習冊答案