【題目】如圖,在等腰直角△ABC中,AB=4,點(diǎn)D是邊AC上一點(diǎn),且AD=1,點(diǎn)E是AB邊上一點(diǎn),連接DE,以線段DE為直角邊作等腰直角△DEF(D、E、F三點(diǎn)依次呈逆時(shí)針?lè)较颍?dāng)點(diǎn)F恰好落在BC邊上時(shí),則AE的長(zhǎng)是_____.
【答案】或2
【解析】
分兩種情況:①當(dāng)∠DEF=90°時(shí),證明△CDF∽△BFE,得出,求出BF=,得出CF=BC﹣BF=,得出BE=,即可得出答案;
②當(dāng)∠EDF=90°時(shí),同①得△CDF∽△BFE,得出,求出BF=CD=3,得出CF=BC﹣BF=,得出BE=CF=2,即可得出答案.
解:分兩種情況:
①當(dāng)∠DEF=90°時(shí),如圖1所示:
∵△ABC和△DEF是等腰直角三角形,
∴AC=AB=4,∠B=∠C=∠EFD=∠EDF=45°,BC=AB=4,DF=EF,
∵AD=1,
∴CD=AC﹣AD=3,
∵∠EFC=∠EFD+∠CFD=∠B+∠BEF,
∴∠CFD=∠BEF,
∴△CDF∽△BFE,
∴,
∴BF=,
∴CF=BC﹣BF=4﹣=,
∴BE==,
∴AE=AB﹣BE=;
②當(dāng)∠EDF=90°時(shí),如圖2所示:
同①得:△CDF∽△BFE,
∴,
∴BF=CD=3,
∴CF=BC﹣BF=4﹣3=,
∴BE=CF=2,
∴AE=AB﹣BE=2;
綜上所述,AE的長(zhǎng)是或2;
故答案為:或2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,∠BDC=30°,DC=4,AE⊥BD于E,CF⊥BD于F,且E、F恰好是BD的三等分點(diǎn),AE、CF的延長(zhǎng)線分別交DC、AB于N、M點(diǎn),那么四邊形MENF的面積是( )
A.B.C.2D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與y軸交于點(diǎn),與反比例函數(shù)在第二象限內(nèi)的圖象相交于點(diǎn).
(1)求直線AB的解析式;
(2)將直線AB向下平移9個(gè)單位后與反比例函數(shù)的圖象交于點(diǎn)C和點(diǎn)E,與y軸交于點(diǎn)D,求的面積;
(3)設(shè)直線CD的解析式為,根據(jù)圖象直接寫(xiě)出不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店購(gòu)進(jìn)甲、乙兩種型號(hào)的商品。每件甲種商品的進(jìn)價(jià)比每件乙種商品的進(jìn)價(jià)少2元,且用80元購(gòu)進(jìn)甲種商品的數(shù)量與用100元購(gòu)進(jìn)乙種商品的數(shù)量相同.
(1)求甲、乙兩種商品每件的進(jìn)價(jià)各為多少元;
(2)每件甲種商品售價(jià)為12元,每件乙種商品售價(jià)為15元,該超市本次購(gòu)進(jìn)甲種商品的數(shù)量比購(gòu)進(jìn)乙種商品的數(shù)量的3倍少5件,要使兩種商品全部售出后所獲總利潤(rùn)超過(guò)371元,求該超市本次至少購(gòu)進(jìn)乙種商品多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點(diǎn)A(1,3),這兩條直線分別與x軸交于B,C兩點(diǎn).
(1)求k的值;
(2)直接寫(xiě)出當(dāng)x>0時(shí),不等式x+b>的解集;
(3)若點(diǎn)P在x軸上,連接AP,且AP把△ABC的面積分成1:2兩部分,則此時(shí)點(diǎn)P的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)準(zhǔn)備舉辦一次演講比賽,每班限定兩人報(bào)名,初三(1)班的三位同學(xué)(兩位女生,一位男生)都想報(bào)名參加,班主任李老師設(shè)計(jì)了一個(gè)摸球游戲,利用已學(xué)過(guò)的概率知識(shí)來(lái)決定誰(shuí)去參加比賽,游戲規(guī)則如下:在一個(gè)不透明的箱子里放3個(gè)大小質(zhì)地完全相同的乒乓球,在這3個(gè)乒乓球上分別寫(xiě)上、、(每個(gè)字母分別代表一位同學(xué),其中、分別代表兩位女生,代表男生),攪勻后,李老師從箱子里隨機(jī)摸出一個(gè)乒乓球,不放回,再次攪勻后隨機(jī)摸出第二個(gè)乒乓球,根據(jù)乒乓球上的字母決定誰(shuí)去參加比賽。
(1)求李老師第一次摸出的乒乓球代表男生的概率;
(2)請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求恰好選定一名男生和一名女生參賽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是上的四個(gè)點(diǎn),連接交于點(diǎn),過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn),延長(zhǎng)交直線于點(diǎn)
(1)判斷四邊形的形狀并說(shuō)明理由;
(2)求證:是的切線:
(3)若求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(發(fā)現(xiàn)問(wèn)題)
(1)如圖1,已知△CAB和△CDE均為等邊三角形,D在AC上,E在CB上,易得線段AD和BE的數(shù)量關(guān)系是 .
(2)將圖1中的△CDE繞點(diǎn)C旋轉(zhuǎn)到圖2的位置,直線AD和直線BE交于點(diǎn)F.
①判斷線段AD和BE的數(shù)量關(guān)系,并證明你的結(jié)論;
②圖2中∠AFB的度數(shù)是 .
(探究拓展)
(3)如圖3,若△CAB和△CDE均為等腰直角三角形,∠ABC=∠DEC=90°,AB=BC,DE=EC,直線AD和直線BE交于點(diǎn)F,分別寫(xiě)出∠AFB的度數(shù),線段AD、BE間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,點(diǎn)D、E分別是AB、BC的中點(diǎn),過(guò)點(diǎn)C作CF∥AB,與DE的延長(zhǎng)線并交于點(diǎn)F,連接BF.
(1)試判斷四邊形CDBF的形狀,并說(shuō)明理由;
(2)若CD=5,sin∠CAB=,過(guò)點(diǎn)C作CH⊥BF,垂足為H點(diǎn),試求CH的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com