已知關(guān)于x的一元二次方程mx2+2x-l=0(m為常數(shù))有兩個(gè)不相等的實(shí)數(shù)根,則
m的取值范圍是 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
下列命題中,屬于真命題的是( )
A. 各邊相等的多邊形是正多邊形
B. 矩形的對(duì)角線互相垂直
C. 三角形的中位線把三角形分成面積相等的兩部分
D. 對(duì)頂角相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖1所示,已知拋物線y=﹣x2+4x+5的頂點(diǎn)為D,與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),E為對(duì)稱軸上的一點(diǎn),連接CE,將線段CE繞點(diǎn)E按逆時(shí)針方向旋轉(zhuǎn)90°后,點(diǎn)C的對(duì)應(yīng)點(diǎn)C′恰好落在y軸上.
(1)直接寫出D點(diǎn)和E點(diǎn)的坐標(biāo);
(2)點(diǎn)F為直線C′E與已知拋物線的一個(gè)交點(diǎn),點(diǎn)H是拋物線上C與F之間的一個(gè)動(dòng)點(diǎn),若過點(diǎn)H作直線HG與y軸平行,且與直線C′E交于點(diǎn)G,設(shè)點(diǎn)H的橫坐標(biāo)為m(0<m<4),那么當(dāng)m為何值時(shí),S△HGF:S△BGF=5:6?
(3)圖2所示的拋物線是由y=﹣x2+4x+5向右平移1個(gè)單位后得到的,點(diǎn)T(5,y)在拋物線上,點(diǎn)P是拋物線上O與T之間的任意一點(diǎn),在線段OT上是否存在一點(diǎn)Q,使△PQT是等腰直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如右圖,在菱形ABCD中.AB=5,對(duì)角線AC=6.若過點(diǎn)A作AE⊥BC,垂足為E,則AE的長為 ( )
A.4 B.5 C. D.,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在Rt△ABC中,∠ABC= 90°,以AB為直徑的⊙O與AC邊交與點(diǎn)D.過D作⊙O的切線交BC與點(diǎn)E.連接OE.
(1)證明:OE∥AC;
(2)①當(dāng)∠BAC= °時(shí),四邊形ODEB是正方形;
②當(dāng)∠BAC= °時(shí),AD=3DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某校計(jì)劃開設(shè)4門選修課:音樂、繪畫、體育、舞蹈,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門),對(duì)調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)后,繪制了如下不完整的兩個(gè)統(tǒng)計(jì)圖.
根據(jù)以上統(tǒng)計(jì)圖提供的信息,回答下列問題:
(1)此次調(diào)查抽取的學(xué)生人數(shù)為a=____人,其中選擇“繪畫”的學(xué)生人數(shù)占抽樣人數(shù)的百分比為b=____;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求扇形統(tǒng)計(jì)圖中“舞蹈”所對(duì)應(yīng)的圓心角的度數(shù);
(3)若該校有2000名學(xué)生,請(qǐng)估計(jì)全校選擇“繪畫”的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在平行四邊形ABCD中,點(diǎn)P從起點(diǎn)B出發(fā),沿BC,CD逆時(shí)針方向向終點(diǎn)D勻速運(yùn)動(dòng).設(shè)點(diǎn)P所走過的路程為x,則線段AP,AD與平行四邊形的邊所圍成的圖形面積為y,表示y與x的函數(shù)關(guān)系的圖象大致如下圖,則AB邊上的高是
A.3 B.4 C.5 D.6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com