【題目】某校為了解學(xué)生課外閱讀情況,就學(xué)生每周閱讀時間線上隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果整理如下:

閱讀時間人數(shù)統(tǒng)計(jì)表

閱讀時間t(小時)

人數(shù)

占人數(shù)百分比

0≤t0.5

4

20%

0.5≤t1

m

15%

1≤t1.5

5

25%

1.5≤t2

6

n

2≤t2.5

2

10%

根據(jù)圖表解答下列問題:

1)此次抽樣調(diào)查中,共抽取了   名學(xué)生;

2)在閱讀時間人數(shù)統(tǒng)計(jì)表中m   ,n   ;

3)根據(jù)抽樣調(diào)查的結(jié)果,請估計(jì)該校2000名學(xué)生中有多少名學(xué)生每天閱讀時間在2≤t2.5時間段?

【答案】120;(2330%;(3200

【解析】

1)閱讀時間在1≤t1.5人數(shù)÷所在的百分比即可得到結(jié)論;

2)根據(jù)總?cè)藬?shù)×其所占的百分比得到m,根據(jù)1.5≤t2的人數(shù)÷總?cè)藬?shù)即可得到結(jié)論;

3)利用2000×閱讀時間在2≤t2.5時間段的人數(shù)所占的百分比即可得到結(jié)論.

解:(1)此次抽樣調(diào)查中,共抽取了學(xué)生5÷25%20(名);

故答案為:20

2)在閱讀時間人數(shù)統(tǒng)計(jì)表中:

m20×15%3,n×100%30%,

故答案為:3,30%;

32000×10%200(名)

答:估計(jì)該校2000名學(xué)生中有200名學(xué)生每天閱讀時間在2≤t2.5時間段.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:有三條邊相等的四邊形稱為三等邊四邊形.

1)如圖①,平行四邊形中,對角線平分,將線段繞點(diǎn)旋轉(zhuǎn)一個角度,連接

①求證:四邊形是三等邊四邊形;

②如圖②,連接,.求證:;

2)如圖,在(1)的條件下,設(shè)交于點(diǎn),,,,求以,為邊的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C0,﹣2),點(diǎn)A的坐標(biāo)是(2,0),P為拋物線上的一個動點(diǎn),過點(diǎn)PPDx軸于點(diǎn)D,交直線BC于點(diǎn)E,拋物線的對稱軸是直線x=﹣1

1)求拋物線的函數(shù)表達(dá)式;

2)若點(diǎn)P在第二象限內(nèi),且PEOD,求△PBE的面積.

3)在(2)的條件下,若M為直線BC上一點(diǎn),在x軸的上方,是否存在點(diǎn)M,使△BDM是以BD為腰的等腰三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A、B5,0),與y軸交于點(diǎn)C,拋物線的頂點(diǎn)為M(2,-9),連接BM,點(diǎn)P為線段BM上的一個動點(diǎn).

(1)求二次函數(shù)的解析式.

(2)過點(diǎn)Px軸的垂線,垂足為點(diǎn)Q,求四邊形ACPQ面積的最大值.

(3)是否存在點(diǎn)P,使得以P、MC為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,DAB的中點(diǎn),以CD為直徑的O分別交AC,BC于點(diǎn)E,F兩點(diǎn),過點(diǎn)FFGAB于點(diǎn)G

1)試判斷FGO的位置關(guān)系,并說明理由;

2)若AC=6,CD5,求FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),拋物線與x軸的一個交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有兩個不相等的實(shí)數(shù)根.

其中正確結(jié)論的個數(shù)是(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為積極響應(yīng)“弘揚(yáng)傳統(tǒng)文化”的號召,某學(xué)校倡導(dǎo)全校1200名學(xué)生進(jìn)行經(jīng)典詩詞誦背活動,并在活動之后舉辦經(jīng)典詩詞大賽.為了了解本次系列活動的持續(xù)效果,學(xué)校團(tuán)委在活動啟動之初,隨機(jī)抽取部分學(xué)生調(diào)查“一周詩詞誦背數(shù)量”,根據(jù)調(diào)査結(jié)果繪制成的統(tǒng)計(jì)圖(部分)如圖

大賽結(jié)束后一個月,再次抽查這部分學(xué)生的周詩詞誦背數(shù)量,繪制成如下統(tǒng)計(jì)表:

誦背數(shù)量

3

4

5

6

7

8

人數(shù)

10

10

15

40

25

20

請根據(jù)調(diào)查的信息分析

1)學(xué)校團(tuán)委一共抽取了多少名學(xué)生進(jìn)行調(diào)查

2)大賽前誦背4首人數(shù)所在扇形的圓心角為 ,并補(bǔ)充完條形統(tǒng)計(jì)圖

3)估計(jì)大賽后一個月該校學(xué)生一周詩詞誦背6(6)以上的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C的中點(diǎn),連接AC并延長至點(diǎn)D,使CDAC,點(diǎn)EOB上一點(diǎn),且,CE的延長線交DB的延長線于點(diǎn)F,AF交⊙O于點(diǎn)H,連接BH

1)求證:BD是⊙O的切線;(2)當(dāng)OB2時,求BH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究.

如圖,在平面直角坐標(biāo)系中,A(08),C(6,0),以O,A,C為頂點(diǎn)作矩形OABC,動點(diǎn)P從點(diǎn)A出發(fā),沿AO4個單位每秒的速度向O運(yùn)動;同時動點(diǎn)Q從點(diǎn)O出發(fā)沿OC3個單位每秒的速度向C運(yùn)動.設(shè)運(yùn)動時間為t,當(dāng)動點(diǎn)P,Q中的任何一個點(diǎn)到達(dá)終點(diǎn)后,兩點(diǎn)同時停止運(yùn)動.連接PQ

(情景導(dǎo)入)當(dāng)t1時,求出直線PQ的解析式.

(深入探究)①連接AC,若△POQ與△AOC相似,求出t的值.

②如圖,取PQ的中點(diǎn)M,以QM為半徑向右側(cè)作半圓M,直接寫出半圓M的面積的最小值,并直接寫出此時t的值.

(拓展延伸)如圖,過點(diǎn)A作半圓M的切線,交直線BC于點(diǎn)H,于半圓M切于點(diǎn)N

①在P,Q的整個運(yùn)動過程中,點(diǎn)H的運(yùn)動路徑為   

②若固定點(diǎn)H(6,2)不動,則在整個運(yùn)動過程中,半圓M能否與梯形AOCH相切?若能,求出此時t的值;若不能,請證明.

查看答案和解析>>

同步練習(xí)冊答案