【題目】如圖①,在等邊中,,動(dòng)點(diǎn)從點(diǎn)出發(fā),沿邊以每秒1個(gè)單位的速度向終點(diǎn)運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒2個(gè)單位的速度沿著方向運(yùn)動(dòng).連結(jié),設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間秒.

1)用含的代數(shù)式表示線段的長(zhǎng).

2)當(dāng)時(shí),求的值.

3)若的面積為,求之間的函數(shù)關(guān)系式.

4)如圖②,當(dāng)點(diǎn)之間時(shí),連結(jié),被分割成、、,當(dāng)其中的某兩個(gè)三角形面積相等時(shí),直接寫(xiě)出的值.

【答案】1)當(dāng)0≤≤3時(shí),,當(dāng)3<≤6時(shí),;(2;(3,;(4

【解析】

(1)分類(lèi)討論:當(dāng)0≤≤3時(shí)和當(dāng)3<≤6時(shí),根據(jù)題目意思結(jié)合圖形解答即可;

(2)根據(jù)直角三角形的性質(zhì)列出方程,解方程得到答案;

(3)QHABH,根據(jù)直角三角形的性質(zhì)用t表示出QH,根據(jù)三角形的面積公式解答;

(4)分△APQ的面積=PCQ的面積、△APQ的面積=PCB的面積、△CPQ的面積=PCB的面積三種情況進(jìn)行討論.

解:(1)由題意知得:點(diǎn)Q的運(yùn)動(dòng)路程為2t,

當(dāng)0≤≤3時(shí),,

當(dāng)3<≤6時(shí),

(2)∵△ABC為等邊三角形,

∴∠A=60°,

當(dāng)時(shí),∠QPA=30°,

AQ=,即,

解得

(3)如圖①所示,作QHABH,

RtQBH中,

,

如圖②所示,作QHABH

RtQAH中,,

(4)當(dāng)點(diǎn)QAC的中點(diǎn)時(shí),△APQ的面積=PCQ的面積,

12-2t=3,

解得:

如圖①,作CEABE

,

∴△ABC的面積:

,

∴△BPC的面積:,

∴△APC的面積:,

∴△APQ的面積:,

∴△APC的面積:

當(dāng)△APQ的面積=PCB的面積時(shí),

,

整理得:t2-t+4=0,

=1-16=-150,此方程無(wú)解,

當(dāng)△CPQ的面積=PCB的面積時(shí),

,

解得:(舍去),

綜上所述:在△APQ、△PCQ、△PBC中,其中某兩個(gè)三角形相等時(shí),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩地相距300千米,一輛貨車(chē)和一輛轎車(chē)先后從甲地出發(fā)駛向乙地,如圖,線段OA表示貨車(chē)離甲地距離y(千米)與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系;折線OBCDA表示轎車(chē)離甲地距離y(千米)與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系.請(qǐng)根據(jù)圖象解答下列問(wèn)題:

1)當(dāng)轎車(chē)剛到乙地時(shí),此時(shí)貨車(chē)距離乙地   千米;

2)當(dāng)轎車(chē)與貨車(chē)相遇時(shí),求此時(shí)x的值;

3)在兩車(chē)行駛過(guò)程中,當(dāng)轎車(chē)與貨車(chē)相距20千米時(shí),求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A,B,C,D四點(diǎn)都在OO上,弧AC=弧BC,連接AB,CDAD,∠ADC45°.

1)如圖1,ABO的直徑;

2)如圖2,過(guò)點(diǎn)BBECD于點(diǎn)E,點(diǎn)F在弧AC上,連接BFCD于點(diǎn)G,∠FGC2BAD,求證:BA平分∠FBE;

3)如圖3,在(2)的條件下,MNO相切于點(diǎn)M,交EB的延長(zhǎng)線于點(diǎn)N,連接AM,若2MAD+FBA135°,MNABEN26,求線段CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,一次函數(shù)與反比例函數(shù)的圖象在第一象限的交點(diǎn)為

1)求的值;

2)設(shè)一次函數(shù)的圖像與軸交于點(diǎn),連接,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖①、圖②均是4×4的正方形網(wǎng)格,每個(gè)小正方形的頂點(diǎn)稱(chēng)為格點(diǎn),四邊形ABCD的頂點(diǎn)均在格點(diǎn)上,僅用無(wú)刻度直尺,分別按下列要求畫(huà)圖.

1)在圖①中的線段CD上找到一點(diǎn)E,連結(jié)AE,使得AE將四邊形ABCD的面積分成1:2兩部分.

2)在圖②中的四邊形ABCD外部作一條直線l,使得直線l上任意一點(diǎn)與點(diǎn)A、B構(gòu)成三角形的面積是四邊形ABCD面積的.(保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的直徑,弦EFAB于點(diǎn)C,過(guò)點(diǎn)FO的切線交AB的延長(zhǎng)線于點(diǎn)D

1)已知∠Aα,求∠D的大。ㄓ煤α的式子表示);

2)取BE的中點(diǎn)M,連接MF,請(qǐng)補(bǔ)全圖形;若∠A30°,MF,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了到高校招聘大學(xué)生,為此設(shè)置了三項(xiàng)測(cè)試:筆試、面試、實(shí)習(xí).學(xué)生的最終成績(jī)由筆試面試、實(shí)習(xí)依次按325的比例確定.公司初選了若干名大學(xué)生參加筆試,面試,并對(duì)他們的兩項(xiàng)成績(jī)分別進(jìn)行了整理和分析.下面給出了部分信息:

①公司將筆試成績(jī)(百分制)分成了四組,分別為A組:60≤x70B組:70≤x80,C組:80≤x90,D組:90≤x100;并繪制了如下的筆試成績(jī)頻數(shù)分布直方圖.其中,C組的分?jǐn)?shù)由低到高依次為:80,81,8283,8384,8485,86,88,88,8889

②這些大學(xué)生的筆試、面試成績(jī)的平均數(shù)、中位數(shù)、眾數(shù)、最高分如下表:

平均數(shù)

中位數(shù)

眾數(shù)

最高分

筆試成績(jī)

81

m

92

97

面試成績(jī)

80.5

84

86

92

根據(jù)以上信息,回答下列問(wèn)題:

1)這批大學(xué)生中筆試成績(jī)不低于88分的人數(shù)所占百分比為   

2m   分,若甲同學(xué)參加了本次招聘,他的筆試、面試成績(jī)都是83分,那么該同學(xué)成績(jī)排名靠前的是   成績(jī),理由是   

3)乙同學(xué)也參加了本次招聘,筆試成績(jī)雖不是最高分,但也不錯(cuò),分?jǐn)?shù)在D組;面試成績(jī)?yōu)?/span>88分,實(shí)習(xí)成績(jī)?yōu)?/span>80分由表格中的統(tǒng)計(jì)數(shù)據(jù)可知乙同學(xué)的筆試成績(jī)?yōu)?/span>   分;若該公司最終錄用的最低分?jǐn)?shù)線為86分,請(qǐng)通過(guò)計(jì)算說(shuō)明,該同學(xué)最終能否被錄用?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一勘測(cè)人員從山腳點(diǎn)出發(fā),沿坡度為的坡面行至點(diǎn)處時(shí),他的垂直高度上升了米;然后再?gòu)?/span>點(diǎn)處沿坡角為的坡面米/分鐘的速度到達(dá)山頂點(diǎn)時(shí),用了分鐘.

(1)求點(diǎn)到點(diǎn)之間的水平距離;

(2)求山頂點(diǎn)處的垂直高度是多少米?(結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),二次函數(shù)的圖象與軸、直線的交點(diǎn)分別為點(diǎn)、

圖(1 圖(2 (備用圖)

1__________________,=_________

2)連接AB,點(diǎn)是拋物線上一點(diǎn)(異于點(diǎn)A),且,求點(diǎn)的坐標(biāo);

3)如圖(2),點(diǎn)是線段上的動(dòng)點(diǎn),且.設(shè)點(diǎn)的橫坐標(biāo)為

①過(guò)點(diǎn)、分別作軸的垂線,與拋物線相交于點(diǎn)、,連接.當(dāng)取得最大值時(shí),求的值并判斷四邊形的形狀;

②連接,求為何值時(shí),取得最小值,并求出這個(gè)最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案