【題目】如圖,在正方形ABCD中,點E,F分別在邊BCCD上,如果AE=4EF=3,AF=5,那么正方形ABCD的面積等于_____

【答案】

【解析】試題分析:根據(jù)△ABE∽△ECF,可將ABBE之間的關(guān)系式表示出來,在Rt△ABE中,根據(jù)勾股定理AB2+BE2=AC2,可將正方形ABCD的邊長AB求出,進(jìn)而可將正方形ABCD的面積求出.

試題解析:設(shè)正方形的邊長為x,BE的長為a

∵∠AEB+∠BAE=∠AEB+∠CEF=90°

∴∠BAE=∠CEF

∵∠B=∠C

∴△ABE∽△ECF

,,

解得x=4a①

Rt△ABE中,AB2+BE2=AE2

∴x2+a2=42

代入,可得:a=

正方形ABCD的面積為:x2=16a2=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC和△DEF是兩個邊長都為8cm的等邊三角形,且 B、D、C、F都在同一條直線上,連接AD、CE

1)求證:四邊形ADEC是平行四邊形

2)若BD=3cm, ABC沿著BF的方向以每秒1cm的速度運動,設(shè)△ABC運動時間為t

①當(dāng)t等于多少秒時,四邊形ADEC為菱形;

②點B運動過程中,四邊形ADEC有可能是矩形嗎?若可能,請畫出圖形,并求出t的值;若不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某加工廠為趕制一批零件,通過提高加工費標(biāo)準(zhǔn)的方式調(diào)動工人積極性.工人每天加工零件獲得的加工費y(元)與加工個數(shù)x個)之間的部分函數(shù)圖象為折線OA-AB-BC,如圖所示.

1求工人一天加工零件不超過20個時每個零件的加工費.

2)求40≤≤60yx的函數(shù)關(guān)系式.

3)小王兩天一共加工了60個零件,共得到加工費220.在這兩天中,小王第一天加工零件不足20個,求小王第一天加工的零件個數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BDABC的角平分線,點E.F分別在邊AB.BC上,且EDBC,EFAC,求證:

1BE等于CF

2)∠ABC=60゜,∠ADB=100゜,求∠AEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程kx2+2k+1x+2=0

1)求證:無論k取任何實數(shù)時,方程總有實數(shù)根;

2)當(dāng)拋物線y=kx2+2k+1x+2圖象與x軸兩個交點的橫坐標(biāo)均為整數(shù),且k為正整數(shù)時,若Pa,y1),Q1,y2)是此拋物線上的兩點,且y1y2,請結(jié)合函數(shù)圖象確定實數(shù)a的取值范圍;

3)已知拋物線y=kx2+2k+1x+2恒過定點,求出定點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級學(xué)生全部參加初二生物地理會考,從中抽取了部分學(xué)生的生物考試成績,將他們的成績進(jìn)行統(tǒng)計后分為A,B,CD四等,并將統(tǒng)計結(jié)果繪制成如下的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題

1)抽取了______名學(xué)生成績;(2)請把條形統(tǒng)計圖補充完整;

3)扇形統(tǒng)計圖中等級D所在的扇形的圓心角度數(shù)是______;

4)若A,B,C代表合格,該校初二年級有300名學(xué)生,求全年級生物合格的學(xué)生共約多少人

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國務(wù)院辦公廳在2015316日發(fā)布了《中國足球發(fā)展改革總體方案》,這是中國足球史上的重大改革,為進(jìn)一步普及足球知識,傳播足球文化,我市某區(qū)在中小學(xué)舉行了足球在身邊知識競賽,各類獲獎學(xué)生人數(shù)的比例情況如圖所示,其中獲得三等獎的學(xué)生共50名,請結(jié)合圖中信息,解答下列問題:

1)獲得一等獎的學(xué)生人數(shù);

2)在本次知識競賽活動中,AB,CD四所學(xué)校表現(xiàn)突出,現(xiàn)決定從這四所學(xué)校中隨機選取兩所學(xué)校舉行一場足球友誼賽,請用畫樹狀圖或列表的方法求恰好選到AB兩所學(xué)校的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,BM是∠ABC的平分線,交CD于點M,且DM2,平行四邊形ABCD的周長是14,則BC的長等于( 。

A. 2B. 2.5C. 3D. 3.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在四邊形ABCD中,ADBC,∠B=90°,對角線AC的垂直平分線與邊AD、BC分別相交于點E、F.

1)求證:四邊形AFCE是菱形;

2)若AB=6BC=8,求EF的長.

查看答案和解析>>

同步練習(xí)冊答案